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CHAPTER 4

HEAT TRANSFER

Heat Transfer Processes

Thermal Radiation
Thermal Convection
Heat Exchangers
Heat Transfer Augmentation...
Symbols
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EAT transfer is energy transferred because of a temperature

difference. Energy moves from a higher-temperature region
to a lower-temperature region by one or more of three modes:
conduction, radiation, and convection. This chapter presents ele-
mentary principles of single-phase heat transfer, with emphasis on
HVAC applications. Boiling and condensation are discussed in
Chapter 5. More specific information on heat transfer to or from
buildings or refrigerated spaces can be found in Chapters 14 to 19,
23, and 27 of this volume and in Chapter 13 of the 2006 ASHRAE
Handbook—Refrigeration. Physical properties of substances can be
found in Chapters 26, 28, 32, and 33 of this volume and in Chapter
9 of the 2006 ASHRAE Handbook—Refrigeration. Heat transfer
equipment, including evaporators, condensers, heating and cooling
coils, furnaces, and radiators, is covered in the 2008 ASHRAE
Handbook—HVAC Systems and Equipment. For further information
on heat transfer, see the Bibliography.

HEAT TRANSFER PROCESSES

Conduction

Consider a wall that is 10 m long, 3 m tall, and 100 mm thick
(Figure 1A). One side of the wall is maintained at £,; =25°C, and the
other is kept at 7, = 20°C. Heat transfer occurs at rate ¢ through the
wall from the warmer side to the cooler. The heat transfer mode is
conduction (the only way energy can be transferred through a solid).

* If ¢, is raised from 25 to 30°C while everything else remains the
same, g doubles because #,; — ¢, doubles.

» If'the wall is twice as tall, thus doubling the area 4, of the wall, ¢
doubles.

+ If the wall is twice as thick, g is halved.

From these relationships,
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Fig. 1 (A) Conduction and (B) Convection

The preparation of this chapter is assigned to TC 1.3, Heat Transfer and
Fluid Flow.
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where « means “proportional to” and L = wall thickness. However,
this relation does not take wall material into account: if the wall is
foam instead of concrete, ¢ would clearly be less. The constant of
proportionality is a material property, thermal conductivity k.
Thus,

_ (zsl B tsZ)
L/(kAc)

M

where £ has units of W/(m*K). The denominator L/(k4,) can be con-
sidered the conduction resistance associated with the driving
potential (¢,; — t,,). This is analogous to current flow through an
electrical resistance, / = (V] — V,)/R, where (V] — V) is driving
potential, R is electrical resistance, and current / is rate of flow of
charge instead of rate of heat transfer 4.

Thermal resistance has units K/W. A wall with a resistance of
5 K/W requires (f;; — t;,) = 5 K for heat transfer g of 1 W. The ther-
mal/electrical resistance analogy allows tools used to solve electri-
cal circuits to be used for heat transfer problems.

Convection

Consider a surface at temperature #, in contact with a fluid at ¢,
(Figure 1B). Newton’s law of cooling expresses the rate of heat
transfer from the surface of area A4; as

(1,— 1)

=h A(t -t
g = h At - t) T/(hd,)

@)

where /4, is the heat transfer coefficient (Table 1) and has units
of W/(m?K). The convection resistance 1/(4.4,) has units of
K/w.

If 1. > t,, heat transfers from the fluid to the surface, and g is writ-
ten as just g = h,A4,(f. — £;). Resistance is the same, but the sign of
the temperature difference is reversed.

For heat transfer to be considered convection, fluid in contact
with the surface must be in motion; if not, the mode of heat transfer
is conduction. If fluid motion is caused by an external force (e.g.,
fan, pump, wind), it is forced convection. If fluid motion results
from buoyant forces caused by the surface being warmer or cooler
than the fluid, it is free (or natural) convection.

Table 1 Heat Transfer Coefficients by Convection Type
h,, Wim?*K)

Convection Type

Free, gases 2t025
Free, liquids 10 to 1000
Forced, gases 2510250
Forced, liquids 50 to 20 000

Boiling, condensation 2500 to 100 000
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Radiation

Matter emits thermal radiation at its surface when its temperature
is above absolute zero. This radiation is in the form of photons of
varying frequency. These photons leaving the surface need no
medium to transport them, unlike conduction and convection (in
which heat transfer occurs through matter). The rate of thermal
radiant energy emitted by a surface depends on its absolute temper-
ature and its surface characteristics. A surface that absorbs all radi-
ation incident upon it is called a black surface, and emits energy at
the maximum possible rate at a given temperature. The heat emis-
sion from a black surface is given by the Stefan-Boltzmann law:

= 4
qemitted, black — ASOTS

where Ej, = 6T# is the blackbody emissive power in W/m?; T, is
absolute surface temperature, K; and o = 5.67 x 1078 W/(m?-K%) is
the Stefan-Boltzmann constant. If a surface is not black, the emis-
sion per unit time per unit area is

E=coT#

where E is emissive power, and ¢ is emissivity, where 0 < € < 1. For
a black surface, e = 1.

Nonblack surfaces do not absorb all incident radiation. The
absorbed radiation is

Gabsorbed = O4;G

where absorptivity o is the fraction of incident radiation absorbed,
and irradiation G is the rate of radiant energy incident on a surface
per unit area of the receiving surface due to emission and reflection
from surrounding surfaces. For a black surface, o = 1.

A surface’s emissivity and absorptivity are often both functions
of the wavelength distribution of photons emitted and absorbed,
respectively, by the surface. However, in many cases, it is reason-
able to assume that both a and € are independent of wavelength. If
so, o = € (a gray surface).

Two surfaces at different temperatures that can “see” each other
can exchange energy through radiation. The net exchange rate
depends on the surfaces’ (1) relative size, (2) relative orientation and
shape, (3) temperatures, and (4) emissivity and absorptivity.
However, for a small area 4, in a large enclosure at constant tem-
perature ¢,,,,., the irradiation on 4, from the surroundings is the
blackbody emissive power of the surroundings Ej, ;.. So, if ¢, >
t net heat loss from gray surface 4; in the radiation exchange

SM'N‘" 3
with the surroundings at

TSHVV 18
net = Demitted — Qabsorbed = sAsEbs - OLAS]-;“b,sm‘r
= s"430(%4 - t?um (3)

where o = ¢ for the gray surface. If ¢, <t,,,,, the expression for g,,,,
is the same with the sign reversed, and g, is the net gain by 4.
Note that g, can be written as
_ Ebs B Eb, surr
net = T1/(ea,)

In this form, F,, - £}, o, is analogous to the driving potential in
an electric circuit, and 1/(e4;) is analogous to electrical resistance.
This is a convenient analogy when only radiation is being consid-
ered, but if convection and radiation both occur at a surface, convec-
tion is described by a driving potential based on the difference in the
first power of the temperatures, whereas radiation is described by
the difference in the fourth power of the temperatures. In cases like
this, it is often useful to express net radiation as

9net = hrAs(ts - tsurr) = (ts - tsurr)/(l/hrAs) (4)
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Fig.2 Interface Resistance Across Two Layers

where &, = oe(t 2 + t2, )(t, + tg,,) is often called a radiation heat
transfer coefficient. The disadvantage of this form is that 4,
depends on ¢, which is often the desired result of the calculation.

Combined Radiation and Convection

When ¢, = t, in Equation (4), the total heat transfer from a sur-
face by convection and radiation combined is then

9= Grag t Goony = (s — LA (B + hp)

The temperature difference £, — £, is in either kelvins or °C; the dif-
ference is the same. Either can be used; however, absolute temper-
atures must be used to calculate 4,. (Absolute temperatures are K =
°C + 273.15.) Note that 4, and 4, are always positive, and that the
direction of g is determined by the sign of (¢, — ¢,).

Contact or Interface Resistance

Heat flow through two layers encounters two conduction resis-
tances L,/kjA and L,/k,A4 (Figure 2). At the interface between two
layers are gaps across which heat is transferred by a combination of
conduction at contact points and convection and radiation across
gaps. This multimode heat transfer process is usually characterized
using a contact resistance coefficient R,,, or contact conductance
h

cont*

AT
q = ﬂ = hcantAAl

cont

”

where At is the temperature drop across the interface. R/, is in
(m?-K)/W, and A, is in W/(m?-K). The contact or interface resis-
tance is Ry, = R jons!A = 1/h oA, and the resistance of the two lay-
ers combined is the sum of the resistances of the two layers and the
contact resistance.

Contact resistance can be reduced by lowering surface rough-
nesses, increasing contact pressure, or using a conductive grease or

paste to fill the gaps.

Heat Flux
The conduction heat transfer can be written as

"o q — k(tsl_tSZ)
A, L

where ¢ is heat flux in W/m2, Similarly, for convection the heat

flux is

w _ 4 _
5T ho(tg—ty)

and net heat flux from radiation at the surface is

et 4 4
net = = SO(ZS - tsurr)

D et A_
s
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Fig.3 Thermal Circuit

Overall Resistance and Heat Transfer Coefficient

In Equation (1) for conduction in a slab, Equation (4) for radia-
tive heat transfer rate between two surfaces, and Equation (2) for
convective heat transfer rate from a surface, the heat transfer rate is
expressed as a temperature difference divided by a thermal resis-
tance. Using the electrical resistance analogy, with temperature dif-
ference and heat transfer rate instead of potential difference and
current, respectively, tools for solving series electrical resistance
circuits can also be applied to heat transfer circuits. For example,
consider the heat transfer rate from a liquid to the surrounding gas
separated by a constant cross-sectional area solid, as shown in Fig-
ure 3. The heat transfer rate from the fluid to the adjacent surface is
by convection, then across the solid body by conduction, and finally
from the solid surface to the surroundings by both convection and
radiation. A circuit using the equations for resistances in each mode
is also shown. From the circuit, the heat transfer rate is

(tp1 = 1r2)
R +Ry+ R,y
where
(1/h,A)(1/h A)
R, =1/h4 R, =L/kA Ry = 7 21)+(1/;z "
c r

Resistance R is the parallel combination of the convection and
radiation resistances on the right-hand surface, 1/4,4 and 1/4,4.
Equivalently, R; = 1/h,, 4, where £, on the air side is the sum of the
convection and radiation heat transfer coefficients (i.e., &, = ki, + A,).

The heat transfer rate can also be written as

q = UA(tr) - 1))
where U is the overall heat transfer coefficient that accounts for all

the resistances involved. Note that

fe—t
/! f2=é=R1+R2+R3
q

The product U4 is overall conductance, the reciprocal of overall
resistance. The surface area 4 on which U is based is not always
constant as in this example, and should always be specified when
referring to U.

Heat transfer rates are equal from the warm liquid to the solid
surface, through the solid, and then to the cool gas. Temperature
drops across each part of the heat flow path are related to the resis-
tances (as voltage drops are in an electric circuit), so that
Hh-t=qk

L — 1 =qR, =t =qRy

THERMAL CONDUCTION

One-Dimensional Steady-State Conduction

Steady-state heat transfer rates and resistances for (1) a slab of
constant cross-sectional area, (2) a hollow cylinder with radial heat
transfer, and (3) a hollow sphere are given in Table 2.

4.3

Table2 One-Dimensional Conduction Shape Factors

Heat Transfer Thermal
Configuration Rate Resistance
Constant )
Cross- — 1A L L
. qx X
sectional t, t, k4,
area slab X
< L -
l!n!lnw ‘ 2kL(t;—1,) In(r,/r,)
cylinder of g, = >kl
> (", 2nkl
length L Inl _r]
with Nyt
negligible
heat transfer
from end
surfaces
Ilt]!llm\-' dnk(t—1,) i 1/r,=1/r,
sphere ;
phe 4, T, L Ak
't s
| PIPE —
| —t,
|
| CoLD
| WATER K
|
|
| 50 mm
| L1 INSULATION
’E_J q. o 4.
= le————q,
L—""-__-__‘_“-"_—.—\—-'—"'——_-_""\-\.
|

' t f
R, R, Ry

Fig. 4 Thermal Circuit Diagram for Insulated Water Pipe
(Example 1)

Example 1. Chilled water at 5°C flows in a copper pipe with a thermal
conductivity k, of 400 W/(m'K), with internal and external diameters of
ID = 100 mm and OD = 120 mm. The tube is covered with insulation
50 mm thick, with &; = 0.20 W/(m'K). The surrounding air is at ¢, =
25°C, and the heat transfer coefficient at the outer surface 4, =
10 W/(m?2-K). Emissivity of the outer surface is ¢ = 0.85. The heat trans-
fer coefficient inside the tube is 4; = 1000 W/(m?-K). Contact resistance
between the insulation and the pipe is assumed to be negligible. Find the
rate of heat gain per unit length of pipe and the temperature at the pipe-
insulation interface.

Solution: The outer diameter of the insulation is D;,; = 120 + 2(50) =
220 mm, ForL=1m,
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1 -3
R, = = 32x10° K/W
hIDL
_ In(OD/ID) _ s
R, = WOD/ID) 7,157 kyw
27 Tak L )
Ry - 2P D) e g
3 2mk,L '
R, = —— = 0144 /W
hyaD,, L

Assuming insulation surface temperature ¢, = 21°C (i.e., 294 K) and
Loy = 1, = 298.15 K, h, = 0(t2 + 1 2,,)(t; + L) = 5.0 W/(m? K).

1

R, = ———— = 0288 K/W
hnD,, L
R.R,
R, = = 0.096 K/W
R,*R,

Ry =Ry +Ry+ Ry +Ry=0581 KI'W

Finally, the rate of heat gain by the cold water is

=~

Phat

=344W

qi‘C =

=

tot
Temperature at the pipe/insulation interface is
ty =t+q,. (R + Ry =5.1°C
Temperature at the insulation’s surface is
t3=t,— q Ry =21.7°C

which is very close to the assumed value of 22°C.

Two- and Three-Dimensional Steady-State
Conduction: Shape Factors

Mathematical solutions to a number of two and three-dimensional
conduction problems are available in Carslaw and Jaeger (1959).
Complex problems can also often be solved by graphical or numer-
ical methods, as described by Adams and Rogers (1973), Croft and
Lilley (1977), and Patankar (1980). There are many two- and three-
dimensional steady-state cases that can be solved using conduction
shape factors. Using the conduction shape factor S, the heat transfer
rate is expressed as

q=Sk(t; — 1) = (t; - /(1/SK) ©)

where k is the material’s thermal conductivity, ¢, and #, are temper-
atures of two surfaces, and 1/(Sk) is thermal resistance. Conduction
shape factors for some common configurations are given in Table 3.

Example 2. The walls and roof of a house are made of 200 mm thick con-
crete with £ = 0.75 W/(m'K). The inner surface is at 20°C, and the
outer surface is at 8°C. The roof is 10 x 10 m, and the walls are 6 m
high. Find the rate of heat loss from the house through its walls and
roof, including edge and corner effects.

Solution: The rate of heat transfer excluding the edges and corners is
first determined:

A= (10 = 0.4)(10 — 0.4) + 4(10 — 0.4)(6 — 0.2) = 314.9 m?

kA
rotalAT

qwallrceiling = L

[0.75 W/(mK)1(314.9 m%)
B 02m

(20-8)°C = 14 170 W

The shape factors for the corners and edges are in Table 2:
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S

cornerstedges

=4xS

corner tax Sedge

4x0.15L+4 x 0.54W
4x0.15(02 m)+4x0.54(9.6 m) = 20.86 m

and the heat transfer rate is

= ScornerﬁedgeskAT
(20.86 m)[0.75 W/(m-K)](20 - 8)°C
188 W

qcorne»‘redge:

which leads to

Grota; = 14 17T0W +188 W = 14 358 W = 144 kW
Note that the edges and corners are 1.3% of the total.

Extended Surfaces

Heat transfer from a surface can be increased by attaching fins or
extended surfaces to increase the area available for heat transfer. A
few common fin geometries are shown in Figures 5 to 8. Fins provide
a large surface area in a low volume, thus lowering material costs for
a given performance. To achieve optimum design, fins are generally
located on the side of the heat exchanger with lower heat transfer
coefficients (e.g., the air side of an air-to-water coil). Equipment
with extended surfaces includes natural- and forced-convection
coils and shell-and-tube evaporators and condensers. Fins are also
used inside tubes in condensers and dry expansion evaporators.

Fin Efficiency. As heat flows from the root of a fin to its tip, tem-
perature drops because of the fin material’s thermal resistance. The
temperature difference between the fin and surrounding fluid is
therefore greater at the root than at the tip, causing a corresponding
variation in heat flux. Therefore, increases in fin length result in pro-
portionately less additional heat transfer. To account for this effect,
fin efficiency ¢ is defined as the ratio of the actual heat transferred
from the fin to the heat that would be transferred if the entire fin
were at its root or base temperature:

- q
¢ hA (1, —1,) ©

where g is heat transfer rate into/out of the fin’s root, ¢, is temperature
of the surrounding environment, ¢, is temperature at fin root, and 4,
is surface area of the fin. Fin efficiency is low for long or thin fins, or
fins made of low-thermal-conductivity material. Fin efficiency
decreases as the heat transfer coefficient increases because of
increased heat flow. For natural convection in air-cooled condensers
and evaporators, where the air-side % is low, fins can be fairly large
and fabricated from low-conductivity materials such as steel instead
of from copper or aluminum. For condensing and boiling, where
large heat transfer coefficients are involved, fins must be very short
for optimum use of material. Fin efficiencies for a few geometries are
shown in Figures 5 to 8. Temperature distribution and fin efficiencies
for various fin shapes are derived in most heat transfer texts.

Constant-Area Fins and Spines. Fins or spines with constant
cross-sectional area [e.g., straight fins (option A in Figure 7), cy-
lindrical spines (option D in Figure 8)], the efficiency can be cal-
culated as

_ tanh(mW)

T )

where
m= [hP/kA,
P = fin perimeter
A, = fin cross-sectional area
W, = corrected fin/spine length = W+ 4_/P
A /P = d/4 for a cylindrical spine with diameter d

= g/4 for an a X a square spine
=y, = 0/2 for a straight fin with thickness 6
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Table 3 Multidimensional Conduction Shape Factors
Configuration Shape Factor §, m Restriction
Edge of two adjoining walls 0.54W W=L/5 T,
|‘/w/d: ;
gl - :
Ji“‘ Tz
pa— | —|
Corner of three adjoining walls (inner surface at 7 and 0.15L L << length T,
outer surface at T5) and width of i___ T
wall f = :
df b !
| I
j _______ T - Ty
Isothermal rectangular block embedded in semi- 0.078 7
infinite body with one face of block parallel to surface LLM@( g] L>W T, T2 T
of body [In(l N iﬂ ; L=>>d W H 3
W
w.
e\ ; &
: 3
Thin isothermal rectangular plate buried in semi- al
infinite medium AW/ D) d=0,W=>L —7 T
2
2a W d==W d
In(4W/L) W= L
_2aW d=2W
In(2md/L) W==L
Cylinder centered inside square of length L Il L>=W /v
In(0.54W/R) W=2R (L /,’ :
1 Q)
I R
——
Isoth: 1 cylinder buried in semi-infinite medi
sothermal cylinder buried in semi-infinite medium 2:.:;_ o
cosh™' (d/R) Panil’
TI
2L L>>R !
In(2d/R) d>3R _L _;f_
—.—.2:”:"‘ d==R _'ri
]né[l _]n(L/Zd)} L>>d fe———]
R In(L/R)
Horizontal cylinder of length L midway between two
cy C g Y 2nl P

infinite, parallel, isothermal surfaces

(9

Isothermal sphere in semi-infinite medium 4R —1—
S ———— I
I —(R/2d) : i
T
L ’ A’J
2R
Isothermal sphere in infinite medium 4aR T
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Fig. 8 Efficiency of Four Types of Spines
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Empirical Expressions for Fins on Tubes. Schmidt (1949) pres-
ents approximate, but reasonably accurate, analytical expressions
(for computer use) for the fin efficiency of circular, rectangular, and
hexagonal arrays of fins on round tubes, as shown in Figures 5, 9,
and 10, respectively. Rectangular fin arrays are used for an in-line
tube arrangement in finned-tube heat exchangers, and hexagonal
arrays are used for staggered tubes. Schmidt’s empirical solution is
given by

b= tanh (mr,Z) ®

mrbZ
where 7y, is tube radius, m = 4/2h/kd, 8 = fin thickness, and Z is
given by
Z=(r,/ry)— 1][1 + 0.35 In(r, /r)]

where 7, is the actual or equivalent fin tip radius. For circular fins,
r, /7y 1s the actual ratio of fin tip radius to tube radius. For rectangu-
lar fins (Figure 9),

r/ry = 1.28WB-0.2 W =Mr, B=L/M=1
where M and L are defined by Figure 9 as a/2 or 5/2, depending on
which is greater. For hexagonal fins (Figure 10),

r/ry = 1.27%J/B=03

Fig. 9 Rectangular Tube Array

e

. O
1

®
Lo )
o

Fig. 10 Hexagonal Tube Array
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where W and B are defined as previously, and M and L are defined by
Figure 10 as a/2 or b (whichever is less) and O.SA/(¢1/2)72+172,
respectively.

For constant-thickness square fins on a round tube (L = M in Fig-
ure 9), the efficiency of a constant-thickness annular fin of the same
area can be used. For more accuracy, particularly with rectangular
fins of large aspect ratio, divide the fin into circular sectors as
described by Rich (1966).

Other sources of information on finned surfaces are listed in the
References and Bibliography.

Surface Efficiency. Heat transfer from a finned surface (e.g., a
tube) that includes both fin area 4, and unfinned or prime area 4,, is
given by

q= (hpAp + q)hSAs)(tr - te) (9)

Assuming the heat transfer coefficients for the fin and prime sur-

faces are equal, a surface efficiency ¢, can be derived as
_ Ap T 04,

s y (10)

where 4 = A, + 4, is the total surface area, the sum of the fin and
prime areas. The heat transfer in Equation (8) can then be written as

t,—t,

g = 0hA(t,—t,) = —1/(4) )

(11

where 1/(¢,h4) is the finned surface resistance.

Example 3. An aluminum tube with £ = 186 W/(m'K), ID = 45 mm, and
OD = 50 mm has circular aluminum fins & = 1 mm thick with an outer
diameter of D4, = 100 mm. There are N' = 250 fins per metre of tube
length. Steam condenses inside the tube at #; = 200°C with a large heat
transfer coefficient on the inner tube surface. Air at ¢, = 25°C is
heated by the steam. The heat transfer coefficient outside the tube is
40 W/(m?-K). Find the rate of heat transfer per metre of tube length.

Solution: From Figure 5’s efficiency curve, the efficiency of these cir-
cular fins is

W = (Dg,~0OD)/2 = (0.10-0.05)/2 = 0.025 m
X,/X, =0.10/0.05=2.0

7
w |- = 0.025 40 Wi(m® K) =052
Nk(5/2) (186 W/(m-K)](0.0005 m)

The finarea for L=1mis

¢ = 0.89

A, =250 X 2(Dj, —OD2)/4 = 2.945 m?
The unfinned area for L = 1 m s
A, =ax 0D x L(1 - N'8) = n(0.05 m)(1 m)(1 —250 x 0.001)
=0.118 m?
and the total area 4 = 4, + 4, = 3.063 m2, Surface efficiency is
RV

S = 0.894
4

and resistance of the finned surface is

R, = = 0.13x10° K/W
oA

Tube wall resistance is

2 - In(OD/ID) _
wall anktube

In(5/4.5)
2n(1 m)[186 W/(m-K)]

9.02 x 107 K/W

The rate of heat transfer is then
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t—t
g=——2 -18981W
Rs+Rwa11

Had Schmidt’s approach been used for fin efficiency,

m = J2h/k8 = 2074 m  r,=0D/2=0.025m
Z=[(Dy,/OD) — 1] [1 +0.35 In(D,,/OD)] = 1.243

_ tanh(mr,Z)
mryZ

0.88

the same ¢ as given by Figure 5.

Contact Resistance. Fins can be extruded from the prime sur-
face (e.g., short fins on tubes in flooded evaporators or water-cooled
condensers) or can be fabricated separately, sometimes of a differ-
ent material, and bonded to the prime surface. Metallurgical bonds
are achieved by furnace-brazing, dip-brazing, or soldering; nonme-
tallic bonding materials, such as epoxy resin, are also used.
Mechanical bonds are obtained by tension-winding fins around
tubes (spiral fins) or expanding the tubes into the fins (plate fins).
Metallurgical bonding, properly done, leaves negligible thermal
resistance at the joint but is not always economical. Contact resis-
tance of a mechanical bond may or may not be negligible, depend-
ing on the application, quality of manufacture, materials, and
temperatures involved. Tests of plate-fin coils with expanded tubes
indicate that substantial losses in performance can occur with fins
that have cracked collars, but negligible contact resistance was
found in coils with continuous collars and properly expanded tubes
(Dart 1959).

Contact resistance at an interface between two solids is largely a
function of the surface properties and characteristics of the solids,
contact pressure, and fluid in the interface, if any. Eckels (1977)
modeled the influence of fin density, fin thickness, and tube diameter
on contact pressure and compared it to data for wet and dry coils.
Shlykov (1964) showed that the range of attainable contact resis-
tances is large. Sonokama (1964) presented data on the effects of
contact pressure, surface roughness, hardness, void material, and the
pressure of the gas in the voids. Lewis and Sauer (1965) showed the
resistance of adhesive bonds, and Clausing (1964) and Kaspareck
(1964) gave data on the contact resistance in a vacuum environment.

Transient Conduction

Often, heat transfer and temperature distribution under transient
(i.e., varying with time) conditions must be known. Examples are
(1) cold-storage temperature variations on starting or stopping a
refrigeration unit, (2) variation of external air temperature and solar
irradiation affecting the heat load of a cold-storage room or wall
temperatures, (3) the time required to freeze a given material under
certain conditions in a storage room, (4) quick-freezing objects by
direct immersion in brines, and (5) sudden heating or cooling of flu-
ids and solids from one temperature to another.

Lumped Mass Analysis. Often, the temperature within a mass
of material can be assumed to vary with time but be uniform within
the mass. Examples include a well-stirred fluid in a thin-walled con-
tainer, or a thin metal plate with high thermal conductivity. In both
cases, if the mass is heated or cooled at its surface, the temperature
can be assumed to be a function of time only and not location within
the body. Such an approximation is valid if

h(V/A
Bi=¥501

where
Bi = Biot number
h = surface heat transfer coefficient
V = material’s volume
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A = surface area exposed to convective and/or radiative heat transfer
k = material’s thermal conductivity

The temperature is given by

dt _
Mcpa - qnet+qgen (12)

where
M = body mass
¢, = specific heat
Ggen = internal heat generation
gner = Det heat transfer rate to substance (into substance is positive,
and out of substance is negative)

Equation (12) applies to liquids and solids. If the material is a gas
being heated or cooled at constant volume, replace ¢, with the
constant-volume specific heat ¢,. The term g,,, may include heat
transfer by conduction, convection, or radiation and is the difference
between the heat transfer rates into and out of the body. The term
gen May include a chemical reaction (e.g., curing concrete) or heat
generation from a current passing through a metal.

For a lumped mass M initially at a uniform temperature ¢, that is
suddenly exposed to an environment at a different temperature z,,
the time taken for the temperature of the mass to change to 4is given
by the solution of Equation (12) as

tf_ Ie _ _hAST

to—tx Mcp

In

(13)

where
M = mass of solid
¢, = specific heat of solid
A = surface area of solid
h = surface heat transfer coefficient
T = time required for temperature change
t, = final solid temperature
to = initial uniform solid temperature
t. = surrounding fluid temperature

Example 4. A copper sphere with diameter d = 1 mm is to be used as a
sensing element for a thermostat. It is initially at a uniform temperature
of t5=21°C. It is then exposed to the surrounding air at 7., = 20°C. The
combined heat transfer coefficient is # = 60 W/(m?'K). Determine the
time taken for the temperature of the sensing element to reach ¢ =
20.5°C. The properties of copper are

p=8933kg/m} ¢, =385J/(kg'K) k=401 W/(mK)

Solution: Bi = A(d/2)/k = 60.35(0.001/2)/401 = 7.5 x 1073, which is
much less than 1, Therefore, lumped analysis is valid.

M= p[4n(d/2)3/3] = 4.677 x 105 kg
A= md?=3.142 x 1076 m?

Using Equation (13), T=6.6s.

Nonlumped Analysis. When the Biot number is greater than 0.1,
variation of temperature with location within the mass is significant.
One example is the cooling time of meats in a refrigerated space: the
meat’s size and conductivity do not allow it to be treated as a lumped
mass that cools uniformly. Nonlumped problems require solving
multidimensional partial differential equations. Many common
cases have been solved and presented in graphical forms (Jakob
1949, 1957; Myers 1971, Schneider 1964). In other cases, numeri-
cal methods (Croft and Lilley 1977; Patankar 1980) must be used.

Estimating Cooling Times for One-Dimensional Geometries.
When a slab of thickness 2L or a solid cylinder or solid sphere with
outer radius r,, is initially at a uniform temperature ¢, and its surface
is suddenly heated or cooled by convection with a fluid at #,,, a math-
ematical solution is available for the temperature ¢ as a function of



Heat Transfer

Table 4 Values of ¢; and p,; in Equations (14) to (17)

Slab Solid Cylinder Solid Sphere

Bi €1 W €1 W €y W
0.5 1.0701  0.6533 1.1143  0.9408 1.1441  1.1656
1.0 1.1191  0.8603 1.2071  1.2558 12732 1.5708
2.0 1.1785  1.0769 1.3384  1.5995 1.4793  2.0288
4.0 12287  1.2646 1.4698  1.9081 1.7202  2.4556
6.0 1.2479  1.3496 1.5253  2.0490 1.8338  2.6537
8.0 12570 1.3978 1.5526  2.1286 1.8920  2.7654
10.0 1.2620  1.4289 1.5677  2.1795 1.9249  2.8363
30.0 1.2717  1.5202 1.5973  2.3261 1.9898  3.0372
50.0 1.2727  1.5400 1.6002  2.3572 1.9962  3.0788

location and time T. The solution is an infinite series. However, after
a short time, the temperature is very well approximated by the first
term of the series. The single-term approximations for the three
cases are of the form

Y=Yof (wn) (14)
where
f—1,
s
to—ty

Yy = = clexp(—lu?Fo)

t—ty

ty = temperature at center of slab, cylinder, or sphere

Fo = on:/LZ: Fourier number
a = thermal diffusivity of solid = k/pc,

L, = L for slab, r, for cylinder, sphere
n = x/L for slab, r/r,, for cylinder

¢y, Wy = coefficients that are functions of Bi
Bi = Biot number = AL /k
f(uyn) = function of wyn, different for each geometry

x = distance from midplane of slab of thickness 2L cooled on both
sides
p = density of solid
¢, = constant pressure specific heat of solid
k = thermal conductivity of solid

The single term solution is valid for Fo > 0.2. Values of ¢; and w;
are given in Table 4 for a few values of Bi, and Couvillion (2004)
provides a procedure for calculating them. Expressions for ¢ for
each case, along with the function f(u;#), are as follows:

Slab

4sin(u,)
flun) = cos(un) ¢, = m (15)
Long solid cylinder
2 J1(P-1)
flugn) = Jo(un) = (16)

2 W)
M () I ()

where J; is the Bessel function of the first kind, order zero. It is
available in math tables, spreadsheets, and software packages.
Jo(0) = 1.

Solid sphere
sin(u,n) 4[sin(u;) - p cos(uy)]

fluyn) = —P-1” ¢ = 24, - sin(2p;) 17

4.9

These solutions are presented graphically (McAdams 1954) by
Gurnie-Lurie charts (Figures 11 to 13). The charts are also valid for
Fo <0.2.

Example 5. Apples, approximated as 0.60 mm diameter solid spheres and
initially at 30°C, are loaded into a chamber maintained at 0°C. If the
surface heat transfer coefficient 4 = 14 W/(m?-K), estimate the time
required for the center temperature to reach ¢ = 1°C.

Properties of apples are

p = 830 kg/m3 k=042 W/(m? K)
¢, =3600 Jikg'K) r,=d2=30mm=0.03m

Solution: Assuming that it will take a long time for the center tempera-
ture to reach 1°C, use the one-term approximation Equation (14). From
the values given,

A
n=L=L=0 B1=ﬂ=14><003=1
ry o 0.03 k 0.42
L 042 _ 1 406x 107 m?/s

bc, 830 x 3600

From Equations (14) and (17) with lim(sin 0/0) = 1, Y = ¥, =
¢, exp(~u2,Fo). For Bi = 1, from Table 4, ¢;= 1.2732 and u, = 1.5708.
Thus,

Fo= Lt - —L 1000333 = 1.476 - O&F - 0003457
W 15708 2 (0.1967/2)
T-262h

Note that Fo = 0.2 corresponds to an actual time of 1280 s.

Multidimensional Cooling Times. One-dimensional transient
temperature solutions can be used to find the temperatures with two-
and three-dimensional temperatures of solids. For example, con-
sider a solid cylinder of length 2L and radius r,, exposed to a fluid
at ¢, on all sides with constant surface heat transfer coefficients 4; on
the end surfaces and %, on the cylindrical surface, as shown in Fig-
ure 14.

The two-dimensional, dimensionless temperature Y(x;,7(,T) can
be expressed as the product of two one-dimensional temperatures
Y1(x1,T) % Yo(ry,T), where

Y, = dimensionless temperature of constant cross-sectional area slab
at (x,,T), with surface heat transfer coefficient 4, associated with
two parallel surfaces

Y, = dimensionless temperature of solid cylinder at (r,t) with
surface heat transfer coefficient 4, associated with cylindrical
surface

From Figures 11 and 12 or Equations (14) to (16), determine Y} at
(x1/L, at/L?, hiL/k) and Y, at (r(/r,,, oat/r?,, hyr,/k).

Example 6. A 70 mm diameter by 125 mm high soda can, initially at ¢, =
30°C, is cooled in a chamber where the air is at £, = 0°C. The heat
transfer coefficient on all surfaces is 2 = 20 W/(m?- K). Determine the
maximum temperature in the can T = 1 h after starting the cooling.
Assume the properties of the soda are those of water, and that the soda
inside the can behaves as a solid body.

Solution: Because the cylinder is short, the temperature of the soda is
affected by the heat transfer rate from the cylindrical surface and end
surfaces. The slowest change in temperature, and therefore the maxi-
mum temperature, is at the center of the cylinder. Denoting the dimen-
sionless temperature by 1,

Y= ch[x Yp[

where Y, is the dimensionless temperature of an infinitely long 70 mm
diameter cylinder, and Y, is the dimensionless temperature of a
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r oAt Bi,, = hL/k=20 x 0.0625/0.5894 = 2.121
Fo, = 1.41x 1077 x 3600/0.06252 = 0.1299
(x4, ry)
Fo,; < 0.2, so the one-term approximation is not valid. Using Figure
hy tg 2r, hy tg 11, Y,;=0.9705. Thus,
i el s e — it et pl
Y=0.572 x 0.9705 = 0.5551 = (t — t)/(t) — to) = t=16.7°C
L L
Note: The solution may not be exact because convective motion of the
hy t, soda during heat transfer has been neglected. The example illustrates

Fig. 14 Solid Cylinder Exposed to Fluid

125 mm thick slab. Each of them is found from the appropriate Biot
and Fourier number, For evaluating the properties of water, choose a
temperature of 15°C and a pressure of 101.35 kPa. The properties of
water are

p=999.1kg/m>  k=0.5894 W/(m-K)
a=kip=141x107 m¥s

¢, = 4184 J/(kg'K)
T©=3600s
1. Determine Y, at n=0.
Bi, = hr,,/k =20 x 0.035/0.5894 = 1.188
Fogy, = at/r,? = (141 x 1077) x 3600/0.035% = 0.4144

Fogyr > 0.2, so use the one-term approximation with Equations (14)
and (16).
Yo =crexp (_HZIFocyI)JO(O)

Interpolating in Table 4 for Bi,,, = 1.188, u,, = 1.3042, Jy(0) = 1,
Cey=1.237, ¥, = 0.572.

2. Determine Y, at n = 0.

the use of the technique. For well-stirred soda, with uniform tempera-
ture within the can, the lumped mass solution should be used.

THERMAL RADIATION

Radiation, unlike conduction and convection, does not need a
solid or fluid to transport energy from a high-temperature surface to
a lower-temperature one. (Radiation is in fact impeded by such a
material.) The rate of radiant energy emission and its characteristics
from a surface depend on the underlying material’s nature, micro-
scopic arrangement, and absolute temperature. The rate of emission
from a surface is independent of the surfaces surrounding it, but the
rate and characteristics of radiation incident on a surface do depend
on the temperatures and spatial relationships of the surrounding sur-
faces.

Blackbody Radiation

The total energy emitted per unit time per unit area of a black sur-
face is called the blackbody emissive power W, and is given by the
Stefan-Boltzmann law:

W,=oT* (18)
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where o = 5.670 x 10~8 W/(m2-K#) is the Stefan-Boltzmann con-
stant.

Energy is emitted in the form of photons or electromagnetic
waves of many different frequencies or wavelengths. Planck showed
that the spectral distribution of the energy radiated by a blackbody is

W,, = €1 (19)
BT T oo
7\.5(6C2/ T_l)

where
W), = blackbody spectral (monochromatic) emissive power, W/m?3
A = wavelength, m
T = temperature, K
C, = first Planck’s law constant = 3.742 x 10716 W-m?
C, = second Planck’s law constant = 0.014 388 m-K

The blackbody spectral emissive power W}, is the energy
emitted per unit time per unit surface area at wavelength A per unit
wavelength band around A; that is, the energy emitted per unit time
per unit surface area in the wavelength band dA is equal to W, dh.
The Stefan-Boltzmann law can be obtained by integrating Equation
(19) over all wavelengths:

[Wpar = oT* =W,
0

Wien showed that the wavelength A ., at which the monochro-
matic emissive power is a maximum (not the maximum wave-
length), is given by

AT = 2898 um 'K (20)

Equation (20) is Wien’s displacement law; the maximum spectral
emissive power shifts to shorter wavelengths as temperature in-
creases, such that, at very high temperatures, significant emission
eventually occurs over the entire visible spectrum as shorter wave-
lengths become more prominent. For additional details, see Incrop-
era et al. (2007).

Actual Radiation

The blackbody emissive power ¥, and blackbody spectral emis-
sive power W, are the maxima at a given surface temperature.
Actual surfaces emit less and are called nonblack. The emissive
power W of a nonblack surface at temperature 7 radiating to the
hemispherical region above it is given by

W=¢oT* @1

where ¢ is the total emissivity. The spectral emissive power W, of
a nonblack surface is given by

Ws. = & Wy 22)
where g; is the spectral emissivity, and W, is given by Equation
(19). The relationship between € and ¢, is given by

W= col= [Wdn= [e,W,dn
0 0

or

o

e = ﬁ [e s (23)

<

If e, does not depend on A, then, from Equation (23), e =¢,, and
the surface is called gray. Gray surface characteristics are often
assumed in calculations. Several classes of surfaces approximate
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this condition in some regions of the spectrum. The simplicity is
desirable, but use care, especially if temperatures are high. Grayness
is sometimes assumed because of the absence of information relat-
ing €; as a function of A.

Emissivity is a function of the material, its surface condition, and
its surface temperature. Table 5 lists selected values; Modest (2003)
and Siegel and Howell (2002) have more extensive lists.

When radiant energy reaches a surface, it is absorbed, reflected,
or transmitted through the material. Therefore, from the first law of
thermodynamics,

atpt+rt=1

where
a = absorptivity (fraction of incident radiant energy absorbed)
p = reflectivity (fraction of incident radiant energy reflected)
T = transmissivity (fraction of incident radiant energy transmitted)

This is also true for spectral values. For an opaque surface, t=0 and
p + o= 1. For a black surface, =1, p =0,and t=0.

Kirchhoff’s law relates emissivity and absorptivity of any
opaque surface from thermodynamic considerations; it states that,
for any surface where incident radiation is independent of angle or
where the surface emits diffusely, €, = a,. If the surface is gray, or
the incident radiation is from a black surface at the same tempera-
ture, then € = a as well, but many surfaces are not gray. For most sur-
faces listed in Table 5, the total absorptivity for solar radiation is
different from the total emissivity for low-temperature radiation,
because €, and o vary with wavelength. Much solar radiation is at
short wavelengths. Most emissions from surfaces at moderate tem-
peratures are at longer wavelengths.

Platinum black and gold black are almost perfectly black and
have absorptivities of about 98% in the infrared region. A small
opening in a large cavity approaches blackbody behavior because
most of the incident energy entering the cavity is absorbed by
repeated reflection within it, and very little escapes the cavity. Thus,
the absorptivity and therefore the emissivity of the opening are close
to unity. Some flat black paints also exhibit emissivities of 98% over
a wide range of conditions. They provide a much more durable
surface than gold or platinum black, and are frequently used on radi-
ation instruments and as standard reference in emissivity or reflec-
tance measurements.

Example 7. In outer space, the solar energy flux on a surface is 1150 W/m2.
Two surfaces are being considered for an absorber plate to be used on
the surface of a spacecraft: one is black, and the other is specially
coated for a solar absorptivity of 0.94 and infrared emissivity of 0.1.
Coolant flowing through the tubes attached to the plate maintains the
plate at 340 K. The plate surface is normal to the solar beam. For each
surface, determine the (1) heat transfer rate to the coolant per unit area
of the plate, and (2) temperature of the surface when there is no coolant
flow.

Solution: For the black surface,
e=a=1,p=0

Absorbed energy flux = 1150 W/m?2

At T, = 340 K, emitted energy flux = W, = 5.67 x 1078 x 340% =
757.7 WimZ,

In space, there is no convection, so an energy balance on the surface
gives

Heat flux to coolant = Absorbed energy flux — Emitted energy flux
=1150-757.7 =392.3 W/m?

For the special surface, use solar absorptivity to determine the
absorbed energy flux, and infrared emissivity to calculate the emitted
energy flux.

Absorbed energy flux = 0.94 x 1150 = 1081 W/m?
Emitted energy flux = 0.1 x 757,7 = 75.8 W/m?
Heat flux to coolant = 1081 - 75.8 = 1005 W/m?
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Table § Emissivities and Absorptivities of Some Surfaces

Total Hemispherical Solar
Surface Emissivity Absorptivity*
Aluminum
Foil, bright dipped 0.03 0.10
Alloy: 6061 0.04 0.37
Roofing 0.24
Asphalt 0.88
Brass
Oxidized 0.60
Polished 0.04
Brick 0.90
Concrete, rough 091 0.60
Copper
Electroplated 0.03 0.47
Black oxidized in Ebanol C 0.16 0.91
Plate, oxidized 0.76
Glass
Polished 0.87 10 0.92
Pyrex 0.80
Smooth 0.91
Granite 0.44
Gravel 0.30
Ice 0.96 t0 0.97
Limestone 0.92
Marble
Polished or white 0.89 t0 0.92
Smooth 0.56
Mortar, lime 0.90
Nickel
Electroplated 0.03 0.22
Solar absorber, electro-oxidized 0.05t0 0.11 0.85
on copper
Paints
Black
Parsons optical, silicone high 0.87 t0 0.92 0.94 10 0.97
heat, epoxy
Gloss 0.90
Enamel, heated 1000 h at 650 K 0.80
Silver chromatone 0.24 0.20
White
Acrylic resin 0.90 0.26
Gloss 0.85
Epoxy 0.85 0.25
Paper, roofing or white 0.881t0 0.86
Plaster, rough 0.89
Refractory 0.90t0 0.94
Sand 0.75
Sandstone, red 0.59
Silver, polished 0.02
Snow, fresh 0.82 0.13
Soil 0.94
Water 0.90 0.98
White potassium zirconium silicate 0.87 0.13

Source: Mills (1999)
*Values are for extraterrestrial conditions, except for concrete, snow, and water.

Without coolant flow, heat flux to the coolant is zero. Therefore,
absorbed energy flux = emitted energy flux. For the black surface,

1150=5.67x 108 xT\* = 7,=377.1K
For the special surface,

0.94x 1150=0.1 x 5.67 x 108 x T, = T, = 660.8 K

4.13

Angle Factor

The foregoing discussion addressed emission from a surface and
absorption of radiation leaving surrounding surfaces. Before radia-
tion exchange among a number of surfaces can be addressed, the
amount of radiation leaving one surface that is incident on another
must be determined.

The fraction of all radiant energy leaving a surface i that is
directly incident on surface & is the angle factor F;;, (also known as
view factor, shape factor, and configuration factor). The angle
factor from area 4, to area A, £y, is similarly defined, merely by
interchanging the roles of i and k. The following relations assume

* All surfaces are gray or black

* Emission and reflection are diffuse (i.e., not a function of direc-
tion)

* Properties are uniform over the surfaces

Absorptivity equals emissivity and is independent of temperature

of source of incident radiation

Material located between radiating surfaces neither emits nor

absorbs radiation

These assumptions greatly simplify problems, and give good
approximate results in many cases. Some of the relations for the
angle factor are given below.

Reciprocity relation.

Fpd;=Fud, (24a)

Decomposition relation. For three surfaces i, j, and %, with Al-j
indicating one surface with two parts denoted by 4; and 4,

Aka-ij = Aka-i + Alch-j (24b)
AyFyp=A4F g+ 4F, (24¢c)

Law of corresponding corners. This law is discussed by Love
(1968) and Suryanarayana (1995). Its use is shown in Example 8.

Summation rule. For an enclosure with »n surfaces, some of
which may be inside the enclosure,

n
Y Fy =1 (24d)
k=1

Note that a concave surface may “see itself,” and Fj; = 0 for such a
surface.

Numerical values of the angle factor for common geometries are
given in Figure 15. For equations to compute angle factors for many
configurations, refer to Siegel and Howell (2002).

Example 8. A picture window, 3 m long and 1.8 m high, is installed in a
wall as shown in Figure 16. The bottom edge of the window is on the
floor, which is 6 by 10 m. Denoting the window by 1 and the floor by
234, find Fyz4.1.

Solution: From decomposition rule,
Ay3aFo3a = AyFpy + A3F3y + AgFy,y
By symmetry, Ay Fp. = AgF4and Ayzy = A3 F3 + 245F5 .
Ay3Fyyy5 = ArFoat Axfps
A+ AsFy s

From the law of corresponding corners, 4,F5.; = A3F3.5, so there-

fore Ay Fyy.5 = AyFy s+ A3 F3 | + 24, F5 . Thus,
Ax3afnan = A3Fy T ApFoys — ApFos— AyFyy = Ay Fons — Ay F s
Ayzs =60 m? Ay =45m? Ay=15m?

From Figure 15A with Y/X' = 10/6 = 1.67 and Z/X = 1.8/4.5 = 0.4,
Fy315=0.061. With YYX=10/1.5=6.66 and ZIX=1.8/1.5=12, F55 =
0.041. Substituting the values, Fp34.1 = 1/60(45 x 0.061 — 15 x 0.041) =
0.036.
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Fig. 16 Diagram for Example 8

Radiant Exchange Between Opaque Surfaces

A surface 4;radiates energy at arate independent of its surround-
ings. It absorbs and reflects incident radiation from surrounding
surfaces at a rate dependent on its absorptivity. The net heat transfer
rate g, is the difference between the rate radiant energy leaves the
surface and the rate of incident radiant energy; it is the rate at which
energy must be supplied from an external source to maintain the
surface at a constant temperature. The net radiant heat flux from a
surface 4, is denoted by ¢";.

Several methods have been developed to solve specific radiant
exchange problems. The radiosity method and thermal circuit
method are presented here.

Consider the heat transfer rate from a surface of an n-surface
enclosure with an intervening medium that does not participate in
radiation. All surfaces are assumed gray and opaque. The radiosity
J; is the total rate of radiant energy leaving surface i per unit area
(i.e., the sum of energy flux emitted and energy flux reflected):

Ji= Wy +p,G; (25)
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where G; is the total rate of radiant energy incident on surface 7 per
unit area. For opaque gray surfaces, the reflectivity is

pi=l-0;=1-¢g
Thus,
Ji=e Wy + (1-¢)G; (26)

Note that for a black surface,e =1, p =0, and J = W,
The net radiant energy transfer g; is the difference between the
total energy leaving the surface and the total incident energy:

9;=4;(J;-G) @7
Eliminating G, between Equations (26) and (27),

Wbi_‘]i

CErSY) @8)

q;

Radiosity Method. Consider an enclosure of # isothermal sur-
faces with areas of 4, 4,, ..., 4,, and emissivities of €, €5, ..., €,
respectively. Some may be at uniform but different known tem-
peratures, and the remaining surfaces have uniform but different
and known heat fluxes. The radiant energy flux incident on a surface
G, is the sum of the radiant energy reaching it from each of the #

surfaces:

n n n
Gd;= S Fudidy =Y Fydyd, of G,=YFuJ, (29
k=1 k=1 k=1

Substituting Equation (29) into Equation (26),

n
Iy = oWyt (1-8)S Fud, (30)
k=1

Combining Equations (30) and (28),

A

) n
J= S, 31)
I k=1

Note that in Equations (30) and (31), the summation includes
surface i.

Equation (30) is for surfaces with known temperatures, and
Equation (31) for those with known heat fluxes. An opening in the
enclosure is treated as a black surface at the temperature of the sur-
roundings. The resulting set of simultaneous, linear equations can
be solved for the unknown J;s.

Once the radiosities (J;s) are known, the net radiant energy trans-
fer to or from each surface or the emissive power, whichever is
unknown is determined.

For surfaces where Ej; is known and ¢; is to be determined, use
Equation (28) for a nonblack surface. For a black surface, J;, = Wy,
and Equation (31) can be rearranged to give

q' n
j = Wbi_zFika (32)
i k=1

At surfaces where g¢; is known and E,, is to be determined, rear-

range Equation (28):

1-¢,
Ebi = Jl'+qi F (33)

ivi
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The temperature of the surface is then
W, 1/4
T, = [_’] (34)
o

A surface in radiant balance is one for which radiant emission is
balanced by radiant absorption (i.e., heat is neither removed from
nor supplied to the surface). These are called reradiating, insu-
lated, or refractory surfaces. For these surfaces, ¢; = 0 in Equation
(31). After solving for the radiosities, #}, can be found by noting
that ¢; = 0 in Equation (33) gives W, =J..

Thermal Circuit Method. Another method to determine the
heat transfer rate is using thermal circuits for radiative heat transfer
rates. Heat transfer rates from surface i to surface & and surface & to
surface 7, respectively, are given by

Gi=AF e (Ji=J)  and g = AFy (=)
Using the reciprocity relation 4;F;_; = A;F_;, the net heat transfer
rate from surface i to surface £ is

_AF () = i 35
i i—k( i /() l/AFk ( )
1 1-

Dk = 9i-k™ Dk-i
Equations (28) and (35) are analogous to the current in a resis-
tance, with the numerators representing a potential difference and
the denominator representing a thermal resistance. This analogy can
be used to solve radiative heat transfer rates among surfaces, as
illustrated in Example 9.

Using angle factors and radiation properties as defined assumes
that the surfaces are diffuse radiators, which is a good assumption
for most nonmetals in the infrared region, but poor for highly pol-
ished metals. Subdividing the surfaces and considering the variation
of radiation properties with angle of incidence improves the approx-
imation but increases the work required for a solution. Also note that
radiation properties, such as absorptivity, have significant uncer-
tainties, for which the final solutions should account.

Example 9. Consider a 4 m wide, 5 m long, 2.5 m high room as shown in
Figure 17. Heating pipes, embedded in the ceiling (1), keep its temper-
ature at 40°C. The floor (2) is at 30°C, and the side walls (3) are at
18°C. The emissivity of each surface is 0.8. Determine the net radiative
heat transfer rate to/from each surface.

Solution: Consider the room as a three-surface enclosure. The corre-
sponding thermal circuit is also shown. The heat transfer rates are
found after finding the radiosity of each surface by solving the thermal
circuit.

From Figure 15A,

Fia=Fy,=0376
Y

b1
Q-_l 1
4

Jye—
HI

/'I Wis

5m
4y
q;r' T P

5|
®
®

b

B
3

sz
= =

Fig. 17 Diagrams for Example 9
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From the summation rule, F'y_; + Fy , + F 3= 1. With F | =0,

Fila=1-F1,=0624=F,4

_l-gp  1-08

R = - =00125m? =R

T dE,  20w0g CUIBMEoR
_l-8 _1-08 _ P

Bs= = = Gngg - 0008 556m
-1 - __1 . 2

Re= T, “20x0a76 0P
1 1 G

R =0.080 13 m2 = Ry

T AF,, 20x0624
Performing a balance on each of the three J; nodes gives

W, — - -
b1 J1+J2 J1+J3 Ji_

Surface 1: 0
R, Ry, Ri3

Surface 2: Wb27J2+J17J2+J37J2 =0
R, Ry, Ry
Woa=Jdy Ji=Jy J,—J

Surface 3: B3 73,71 3,72 3o

R3 R13 R23

Wy, = 5.67x10 °x3132° = 5456 W/m”

Wy, = 4792 Wim® W, = 407.7 Wm’

Substituting the values and solving for Jy, J5, and J3,
J1=5245W/m? J,=475.1 W/m? J;=418.9 W/m?

We1=J1 _ 545.6-524.5
R, 0.0125

328 W gy =-2016 W

g, = = 1688 W

92

Radiation in Gases

Monatomic and diatomic gases such as oxygen, nitrogen, hydro-
gen, and helium are essentially transparent to thermal radiation.
Their absorption and emission bands are confined mainly to the
ultraviolet region of the spectrum. The gaseous vapors of most
compounds, however, have absorption bands in the infrared region.
Carbon monoxide, carbon dioxide, water vapor, sulfur dioxide, am-
monia, acid vapors, and organic vapors absorb and emit significant
amounts of energy.

Radiation exchange by opaque solids may be considered a sur-
face phenomenon unless the material is transparent or translucent,
though radiant energy does penetrate into the material. However,
the penetration depths are small. Penetration into gases is very sig-
nificant.

Beer’s law states that the attenuation of radiant energy in a gas is
a function of the product p,L of the partial pressure of the gas and
the path length. The monochromatic absorptivity of a body of gas of
thickness L is then

oy, =1—e ot (36)

Because absorption occurs in discrete wavelength bands, the
absorptivities of all the absorption bands must be summed over the
spectral region corresponding to the temperature of the blackbody
radiation passing through the gas. The monochromatic absorption
coefficient oy is also a function of temperature and pressure of the
gas; therefore, detailed treatment of gas radiation is quite complex.
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Table 6 Emissivity of CO, and Water Vapor in Air at 24°C

CO,, % by Volume Relative Humidity, %

Path Length,

m 0.1 0.3 1.0 10 50 100
3 0.03 0.06 0.09 0.06 0.17 0.22
30 0.09 0.12 0.16 0.22 0.39 0.47
300 0.16 0.19 0.23 0.47 0.64 0.70

Table 7 Emissivity of Moist Air and CO, in Typical Room

Relative Humidity, % €

g
10 0.10
50 0.19
75 0.22

Estimated emissivity for carbon dioxide and water vapor in air at
24°Cis a function of concentration and path length (Table 6). Values
are for an isothermal hemispherically shaped body of gas radiating
at its surface. Among others, Hottel and Sarofim (1967), Modest
(2003), and Siegel and Howell (2002) describe geometrical cal-
culations in their texts on radiation heat transfer. Generally, at low
values of p, L, the mean path length L (or equivalent hemispherical
radius for a gas body radiating to its surrounding surfaces) is four
times the mean hydraulic radius of the enclosure. A room with a
dimensional ratio of 1:1:4 has a mean path length of 0.89 times the
shortest dimension when considering radiation to all walls. For a
room with a dimensional ratio of 1:2:6, the mean path length for the
gas radiating to all surfaces is 1.2 times the shortest dimension. The
mean path length for radiation to the 2 by 6 face is 1.18 times the
shortest dimension. These values are for cases where the partial
pressure of the gas times the mean path length approaches zero
(pgL = 0). The factor decreases with increasing values of p,L. For
average rooms with approximately 2.4 m ceilings and relative
humidity ranging from 10 to 75% at 24°C, the effective path length
for carbon dioxide radiation is about 85% of the ceiling height, or
2 m. The effective path length for water vapor is about 93% of the
ceiling height, or 2.3 m. The effective emissivity of the water vapor
and carbon dioxide radiating to the walls, ceiling, and floor of a
room 4.9 by 14.6 m with 2.4 m ceilings is in Table 7.

Radiation heat transfer from the gas to the walls is then
g = 04,8, (T}TH (37

The preceding discussion indicates the importance of gas radia-
tion in environmental heat transfer problems. In large furnaces, gas
radiation is the dominant mode of heat transfer, and many additional
factors must be considered. Increased pressure broadens the spectral
bands, and interaction of different radiating species prohibits simple
summation of emissivity factors for the individual species. Non-
blackbody conditions require separate calculations of emissivity
and absorptivity. Hottel and Sarofim (1967) and McAdams (1954)
discuss gas radiation more fully.

THERMAL CONVECTION

Convective heat transfer coefficients introduced previously can
be estimated using correlations presented in this section.

Forced Convection

Forced-air coolers and heaters, forced-air- or water-cooled con-
densers and evaporators, and liquid suction heat exchangers are
examples of equipment that transfer heat primarily by forced con-
vection. Although some generalized heat transfer coefficient corre-
lations have been mathematically derived from fundamentals, they
are usually obtained from correlations of experimental data. Most
correlations for forced convection are of the form



Heat Transfer

hL,
Nu = - = f(Re;, Pr)
where
Nu = Nusselt number
h = convection heat transfer coefficient
L, = characteristic length
Re;. = pVL /u=VL, /v
V = fluid velocity
Pr = Prandtl number = c,u/k
¢, = fluid specific heat
u = fluid dynamic viscosity
p = fluid density
v = kinematic viscosity = u/p
k = fluid conductivity

Fluid velocity and characteristic length depend on the geometry.

External Flow. When fluid flows over a flat plate, a boundary
layer forms adjacent to the plate. The velocity of fluid at the plate
surface is zero and increases to its maximum free-stream value at
the edge of the boundary layer (Figure 18). Boundary layer forma-
tion is important because the temperature change from plate to fluid
occurs across this layer. Where the boundary layer is thick, thermal
resistance is great and the heat transfer coefficient is small. Flow
within the boundary layer immediately downstream from the lead-
ing edge is laminar. As flow proceeds along the plate, the laminar
boundary layer increases in thickness to a critical value. Then,
turbulent eddies develop in the boundary layer, except in a thin lam-
inar sublayer adjacent to the plate.

The boundary layer beyond this point is turbulent. The region
between the breakdown of the laminar boundary layer and estab-
lishment of the turbulent boundary layer is the transition region.
Because turbulent eddies greatly enhance heat transport into the
main stream, the heat transfer coefficient begins to increase rapidly
through the transition region. For a flat plate with a smooth leading
edge, the turbulent boundary layer starts at distance x, from the
leading edge where the Reynolds number Re = V'x,/v is in the range
300 000 to 500 000 (in some cases, higher). In a plate with a blunt
front edge or other irregularities, it can start at much smaller Reyn-
olds numbers.

Internal Flow. For tubes, channels, or ducts of small diameter at
sufficiently low velocity, the laminar boundary layers on each wall
grow until they meet. This happens when the Reynolds number
based on tube diameter, Re = Vavg D/v, is less than 2000 to 2300.
Beyond this point, the velocity distribution does not change, and no
transition to turbulent flow takes place. This is called fully devel-
oped laminar flow. When the Reynolds number is greater than
10 000, the boundary layers become turbulent before they meet, and
fully developed turbulent flow is established (Figure 19). If flow is
turbulent, three different flow regions exist. Immediately next to the
wall is a laminar sublayer, where heat transfer occurs by thermal
conduction; next is a transition region called the buffer layer, where

e — V—> V—>
-_— TRANSITION
BUFFER
V— INTENSE REGION
v TURBULENCE
— oo LAMINAR
FLAT PLATE R SUBLAYER
\ \\J"),.
| LAMINAR ‘| TURBULENT ‘|
|~ BOUNDARY LAYER | BOUNDARY LAYER |

Fig. 18 External Flow Boundary Layer Build-up
(Vertical Scale Magnified)
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both eddy mixing and conduction effects are significant; the final
layer, extending to the pipe’s axis, is the turbulent region, where
the dominant mechanism of transfer is eddy mixing.

In most equipment, flow is turbulent. For low-velocity flow in
small tubes, or highly viscous liquids such as glycol, the flow may
be laminar.

The characteristic length for internal flow in pipes and tubes is
the inside diameter. For noncircular tubes or ducts, the hydraulic
diameter D, is used to compute the Reynolds and Nusselt numbers.
It is defined as

Cross-sectional area for flow
Total wetted perimeter

D, =4x (38)

Inserting expressions for cross-sectional area and wetted perim-
eter of common cross sections shows that the hydraulic diameter is
equal to

* The diameter of a round pipe

» Twice the gap between two parallel plates

¢+ The difference in diameters for an annulus

* The length of the side for square tubes or ducts

Table 8 lists various forced-convection correlations. In general,
the Nusselt number is determined by the flow geometry, Reynolds
number, and Prandtl number, One often useful form for internal
flow is known as Colburn’s analogy:

Nu Jr

j =
RePr'”? 2

where /7 is the Fanning friction factor and j is the Colburn j-factor.

It is related to the friction factor by the interrelationship of the trans-

port of momentum and energy in turbulent flow. These factors are

plotted in Figure 20.
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Simplified correlations for atmospheric air are also given in
Table 8. Figure 21 gives graphical solutions for water.

With a uniform tube surface temperature and heat transfer coef-
ficient, the exit temperature can be calculated using
L= 1, _ hA

In

t—1;  me,

(39)

where ¢, and ¢, are the inlet and exit bulk temperatures of the fluid,
t, is the pipe/duct surface temperature, and A is the surface area
inside the pipe/duct. The convective heat transfer coefficient varies
in the direction of flow because of the temperature dependence of
the fluid properties. In such cases, it is common to use an average
value of 4 in Equation (39) computed either as the average of / eval-
uated at the inlet and exit fluid temperatures or evaluated at the aver-
age of the inlet and exit temperatures.

With uniform surface heat flux ¢”, the temperature of fluid at any
section can be found by applying the first law of thermodynamics:

mey(t—1)=q"4 (40)
The surface temperature can be found using
q" = h(t;- 1) (41

With uniform surface heat flux, surface temperature increases in the
direction of flow along with the fluid.

Natural Convection. Heat transfer with fluid motion resulting
solely from temperature differences (i.e., from temperature-
dependent density and gravity) is natural (free) convection. Natural-
convection heat transfer coefficients for gases are generally much
lower than those for forced convection, and it is therefore important
not to ignore radiation in calculating the total heat loss or gain. Radi-
ant transfer may be of the same order of magnitude as natural con-
vection, even at room temperatures; therefore, both modes must be
considered when computing heat transfer rates from people, furni-
ture, and so on in buildings (see Chapter 9).

Natural convection is important in a variety of heating and refrig-
eration equipment, such as (1) gravity coils used in high-humidity
cold-storage rooms and in roof-mounted refrigerant condensers,
(2) the evaporator and condenser of household refrigerators, (3)
baseboard radiators and convectors for space heating, and (4) cool-
ing panels for air conditioning. Natural convection is also involved
in heat loss or gain to equipment casings and interconnecting ducts
and pipes.
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Consider heat transfer by natural convection between a cold fluid
and a hot vertical surface. Fluid in immediate contact with the surface
is heated by conduction, becomes lighter, and rises because of the dif-
ference in density of the adjacent fluid. The fluid’s viscosity resists
this motion. The heat transfer rate is influenced by fluid properties,
temperature difference between the surface at £; and environment at
t,., and characteristic dimension L,. Some generalized heat transfer
coefficient correlations have been mathematically derived from fun-
damentals, but they are usually obtained from correlations of experi-
mental data. Most correlatioan for natural convection are of the form

Nu = TE = f(Ra;, Pr)
where
Nu = Nusselt number
H = convection heat transfer coefficient
L, = characteristic length
K = fluid thermal conductivity
Ra;, = Rayleigh number = g AtL3/va.
Al = |t — 1y
g = gravitational acceleration
B = coefficient of thermal expansion
v = fluid kinematic viscosity = w/p
o = fluid thermal diffusivity = k/pc,
Pr = Prandt]l number = v/a

Correlations for a number of geometries are given in Table 9.
Other information on natural convection is available in the Bibliog-
raphy under Heat Transfer, General.

Comparison of experimental and numerical results with existing
correlations for natural convective heat transfer coefficients indi-
cates that caution should be used when applying coefficients for
(isolated) vertical plates to vertical surfaces in enclosed spaces
(buildings). Altmayer et al. (1983) and Bauman et al. (1983) devel-
oped improved correlations for calculating natural convective heat
transfer from vertical surfaces in rooms under certain temperature
boundary conditions.

Natural convection can affect the heat transfer coefficient in the
presence of weak forced convection. As the forced-convection effect
(i.e., the Reynolds number) increases, “mixed convection” (superim-
posed forced-on-free convection) gives way to pure forced convec-
tion. In these cases, consult other sources [e.g., Grigull et al. (1982);
Metais and Eckert (1964)] describing combined free and forced con-
vection, because the heat transfer coefficient in the mixed-convec-
tion region is often larger than that calculated based on the natural- or
forced-convection calculation alone. Metais and Eckert (1964) sum-
marize natural-, mixed-, and forced-convection regimes for vertical
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Table 8 Forced-Convection Correlations

I. General Correlation Nu =f(Re, Pr)
IL. Internal Flows for Pipes and Ducts: Characteristic length = D, pipe diameter, or Dy, hydraulic diameter.
vV, ..D WD D ’ .
Re = Plave™n - 7% _ 90y _ 4m__ 40 where m = mass flow rate, Q = volume flow rate, P, = wetted perimeter,
[ Aon Ay WPuer  VPy A, = cross-sectional area, and v = kinematic viscosity (u/p).
Nu A
== Colburn’s analogy
Repr'” 2 1/3 0.14 0.42 D
L _ RePr) (M) L RePr(M)- a
< = —_— L e —
Laminar: Re <2300 Nu 1.86( 77D m 558 m (T8.2)
Developing Nu = 3.66 + 0.065(D/L)Re Pr o (T8.3)
1+0.04[(D/L)Re Pr] '
Fully developed, round Nu=3.66 Uniform surface temperature (T8.4a)
Nu=4.36 Uniform heat flux (T8.4b)
Turbulent: Nu = 0.023 Re#5pr04 Heating fluid (T8.5a)°
Re = 10 000
Fully developed Nu = 0.023 Re4/5pr 03 Cooling fluid (T8.5b)°
Evaluate properties at bulk Re=10000
temperature #, except W Nu = (f/2)(Re —1000)Pr |:1 + (2)2/3} ;= 1 (T8.6)
and ¢, at surface 1+ 12'7(J‘"S/2)1/2(pr2/3_1) L : (1.58 In Re—3.28)2 .
temperature

For fully developed flows, set D/L = 0. Multiply Nu by (7/T,)°45 for gases
and by (Pr/Pr,)%-! for liquids

N 455, 130 W04 - -
Nu = 0.027 Re""Pr 7| — For viscous fluids (T8.7)

s

For noncircular tubes, use hydraulic mean diameter D, in the equations for Nu for an approximate value of 4.

IIL. External Flows for Flat Plate: Characteristic length = L = length of plate. Re = VL/v.
All properties at arithmetic mean of surface and fluid temperatures.

Laminar boundary layer: Nu = 0.332 Rel/2pr13 Local value of & (T8.8)

Re<5x10°
Nu = 0.664 Rel/2pr1/3 Average value of & (18.9)

Turbulent boundary layer: Nu = 0.0296 Re#5prl3 Local value of & (T8.10)
Re>5x 10°

Turbulent boundary layer Nu = 0.037 Re*SPr!3 Average value of & (T8.11)
beginning at leading edge:
All Re

Laminar-turbulent boundary layer: ~ Nu = (0.37 Re*5 — 871)Pr!3 Average value Re, = § x 105 (T8.12)
Re>5x 10°

IV. External Flows for Cross Flow over Cylinder: Characteristic length = D = diameter. Re = VD/v.
All properties at arithmetic mean of surface and fluid temperatures.

Nu — 034 062 Re' “pr'”? [1 . ( Re )5 8 T/S Average value of &
[+ (0.4/Pr)2 3]1 4 282 000 (T8.14) d
V. Simplified Approximate Equations: / is in W/(m?2-K), ¥ is in m/s, D is in m, and ¢ is in °C.
Flows in pipes Atmospheric air (010 200°C): &= (3.76 — 0.004975) " 0-8/D 0.2 (T8.152)°
Re > 10 000 Water (3 to 200°C): h= (1206 +23.99¥ 0.8/p02 (T8.15b)°
Water (4 to 104°C): h=(1431+20.90¥ 08/D 02 (McAdams 1954) (T8.15¢)8
(T8.15a)
Flow over cylinders Atmospheric air: 0°C < ¢ < 200°C, where ¢ = arithmetic mean of air and surface temperature.
h=2.755y047/p 0529 35 <Re <5000 (T8.16a)
h=(4.22-0.002 57¢ ¥ 0633/p 0367 5000 < Re < 50 000 (T8.16b)
Water: 5°C <t < 90°C, where ¢ = arithmetic mean of water and surface temperature.
h=(461.8 +2.015) ¥ 0471/ 0.529 35 <Re <5000 (T8.17a)
h=(1012 + 9.197) ¥ 0-633/p 0.367 5000 < Re < 50 000 (T8.17b)f

Sources: *Sieder and Tate (1936), PDittus and Boelter (1930), Gnielinski (1990), 9Churchill and Bernstein (1977), €Based on Nu = 0.023 Re*#>Pr!/3, ‘Based on Morgan (1975).
gMcAdams (1954).
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Table 9 Natural Convection Correlations
I. General relationships Nu=f(Ra, Pr) orf(Ra) (T9.1)
2 3
Characteristic length depends on geometry Ra=GrPr Gr = gBp’| éT\L Pr— %‘ Iy
n
I1. Vertical plate
1/4
1, = constant Nu = 0.68+ 0.67Ra — 10-! < Ra< 109 (T9.2)¢
[1+(0.492/Pr)*"%]
0.387Ra' " :
Characteristic dimension: Z = height Nu = {0.825 + : a } 109 <Ra <1012 (T9.3)2
9/168:27
Properties at (£, + £,,)/2 except P at £, [1+(0.492/Pr)" ]
g", = constant 176 2 1 12
Characteristic dimension: L = height Nu = {0.825 + 0.387Ra } 10" <Ra<10 (T9.4)
Properties at f; ;) — I, except B at f;, ' . ' [1+(0.437/Pr)” 1687
Equations (T9.2) and (T9.3) can be used for vertical cylinders if
D/L > 35/Grl"* where D is diameter and L is axial length of cylinder
I11. Horizontal plate
Characteristic dimension = L = A/P, where A is plate area and P is perimeter
Properties of fluid at (¢, + ,,)/2
Downward-facing cooled plate and upward-facing heated plate ~ Nu = 0.96 Ral/6 1 <Ra <200 (T9.5)b
Nu=0.59 Ral# 200 < Ra< 104 (T9.6)°
Nu=0.54 Ral*# 22x10%<Ra<8x 106 (T9.7)°
Nu=0.15 Ral 8x105<Ra<1.5x10° (T9.8)°
Downward-facing heated plate and upward-facing cooled plate  Nu=0.27 Ral* 105 < Ra < 1010 (T9.9)b
IV. Horizontal cylinder 16 2
L . _ 0.387 Ra
Characteristic length = d = diameter Nu =406+ 109<Ra <103 (T9.10)¢
] . [1+(0.559/P )9/16]827
Properties of fluid at (¢, + £,,)/2 except B at #,, : T
V. Sphere
L , _ 0.589 Ra'"
Characteristic length = D = diameter Nu = 2+ Ra<10!! (T9.11)d
. 1+(0.469/Pr)° 1671*°
Properties at (¢, + t.,.)/2 except B at ¢, [ :
VI. Horizontal wire 5 33
Characteristic dimension = D = diameter No h{l * _”J 108 <Ra< 108 (T9.12)¢
. u cRa
Properties at (¢, + £,,)/2
VII. Vertical wire
Characteristic dimension = D = diameter; L = length of wire Nu=c(Ra D/L)025 + 0.763 ¢(V)(Ra D/LY124  ¢(RaD/LY0Z>2x 103 (T9.13)e
Properties at (1, + £)/2 In both Equations (T9.12) and (T9.13), ¢ = 0.671 — and
. [1 +(0.492/Pr) 19142
n =025+ 0.175
10+ 5(Ra)”
VIII. Simplified equations with air at mean temperature of 21°C: 4 is in W/(m?2-K), L and D are in m, and At is in °C.
A\ 14
Vertical surface h = 1.33(2) 105<Ra<10° (T9.14)
A= 1.26(A0"" Ra > 10° (T9.15)
AT 1/4
Horizontal cylinder h = 1.04(3) 105<Ra<10° (T9.16)
h = 123an"" Ra>10° (19.17)

Sources: *Churchill and Chu (1975a), PLloyd and Moran (1974), Goldstein et al. (1973), ¢Churchill and Chu (1975b), 9Churchill (1990), *Fujii et al, (1986).

and horizontal tubes. Figure 22 shows the approximate limits for hor-
izontal tubes. Other studies are described by Grigull et al. (1982).

Example 10. Chilled water at 5°C flows inside a freely suspended 20 mm
OD pipe at a velocity of 2.5 m/s. Surrounding air is at 30°C, 70% rh.
The pipe is to be insulated with cellular glass having a thermal conduc-
tivity of 0.045 W/(m-K). Determine the radial thickness of the insula-
tion to prevent condensation of water on the outer surface.

Solution: In Figure 23,

;= 5°C 5, = 30°C d;= 0D of tube = 0.02 m

k; = thermal conductivity of insulation material = 0.045 W/(m"K)

From the problem statement, the outer surface temperature ¢, of the
insulation should not be less than the dew-point temperature of air. The
dew-point temperature of air at 30°C, 70% rh = 23.93°C. To determine
the outer diameter of the insulation, equate the heat transfer rate per
unit length of pipe (from the outer surface of the pipe to the water) to
the heat transfer rate per unit length from the air to the outer surface:
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Fig. 23 Diagram for Example 10
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Heat transfer from the outer surface is by natural convection to air,
so the surface heat transfer coefficient 4, is the sum of the convective
heat transfer coefficient £, and the radiative heat transfer coefficient
h,. With an assumed emissivity of 0.7 and using Equation (4), 4, =
4.3 W/(m?-K). To determine the value of d,, the values of the heat
transfer coefficients associated with the inner and outer surfaces (4, and
h,, respectively) are needed. Compute the value of 4; using Equation
(T8.6). Properties of water at an assumed temperature of 5°C are

P, = 1000 kg/m3 y, = 0.001 518 (N-sym? ¢, = 4197 W/(m-K)

k,=05708 W(m'K)  Pr,=11.16 Rey= "9 =32044
u
£=0.02311 Nu, =205.6 h; = 5869 W/(m2K)

To compute 4, using Equation (T9.10), the outer diameter of the
insulation material must be found. Determine it by iteration by assum-
ing a value of d,, computing the value of /,, and determining the value
of d, from Equation (42). If the assumed and computed values of d,, are
close to each other, the correct solution has been obtained. Otherwise,
recompute /, using the newly computed value of d,, and repeat the pro-
cess.

Assume d, = 0.05 m. Properties of air at £,=27°C and 101.325 kPa
are

p=1.176 kg/m® k=0.025 66 W/(mK) u=1.858 x 105 (N's)/m?
Pr=0.729 B =0.003 299 (at 273.15 + 30 = 293.15 K)
Ra =71 745 Nu=7.157 hy=3.67 Wi(m? K)
by, =3.67+4.3=17.97 W(m*K)

From Equation (42), 4, = 0.044 28 m. Now, using the new value
of 0.044 28 m for the outer diameter, the new values of /4, and 4, are
3.78 W/(m?:K) and 8.07 W/(m?-K), respectively. The updated value
of d,, is 0.044 03 m. Repeating the process, the final value of d, =
0.044 01 m. Thus, an outer diameter of 0.045 m (corresponding to an
insulation radial thickness of 12.5 mm) keeps the outer surface tem-
perature at 24.1°C, higher than the dew point. (Another method to
find the outer diameter is to iterate on the outer surface temperature
for different values of d,,.)

HEAT EXCHANGERS

Mean Temperature Difference Analysis

With heat transfer from one fluid to another (separated by a solid
surface) flowing through a heat exchanger, the local temperature
difference At varies along the flow path. Heat transfer rate may be
calculated using

g=UAAt, (43)

where C,
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where U is the overall uniform heat transfer coefficient, 4 is the area
associated with the coefficient U, and At,, is the appropriate mean
temperature difference.

For a parallel or counterflow heat exchanger, the mean tempera-

ture difference is given by

At,, = At; — Aty/In(Aty/Aty) (44)

where At and At, are temperature differences between the fluids at
each end of the heat exchanger; At, is the logarithmic mean
temperature difference (LMTD). For the special case of Af; = Af,
(possible only with a counterflow heat exchanger with equal ca-
pacities), which leads to an indeterminate form of Equation (44),
Alm = tl = Alz.

Equation (44) for At,, is true only if the overall coefficient and

the specific heat of the fluids are constant through the heat
exchanger, and no heat losses occur (often well-approximated in
practice). Parker et al. (1969) give a procedure for cases with vari-
able overall coefficient U. For heat exchangers other than parallel
and counterflow, a correction factor [see Incropera et al. (2007)] is
needed for Equation (44) to obtain the correct mean temperature
difference.

NTU-Effectiveness (¢) Analysis

Calculations using Equations (43) and (44) for At, are conve-

nient when inlet and outlet temperatures are known for both fluids.
Often, however, the temperatures of fluids leaving the exchanger are
unknown. To avoid trial-and-error calculations, the NTU-¢ method
uses three dimensionless parameters: effectiveness €, number of
transfer units (NTU), and capacity rate ratio c,; the mean tempera-
ture difference in Equation (44) is not needed.

Heat exchanger effectiveness ¢ is the ratio of actual heat trans-

fer rate to maximum possible heat transfer rate in a counterflow heat
exchanger of infinite surface area with the same mass flow rates and
inlet temperatures. The maximum possible heat transfer rate for hot
fluid entering at #,; and cold fluid entering at ¢, is

Imax = Coninlpi = 1) (45)

is the smaller of the hot [C, =((rhcp)h] and cold

min

[C.= (rhcp)c] fluid capacity rates, W/K; C, . is the larger. The
actual heat transfer rate is

9 = €G gy (46)

or a given exchanger type, heat transfer effectiveness can generally
be expressed as a function of the number of transfer units (NTU)
and the capacity rate ratio c,:

e =f(NTU, c,, Flow arrangement) 47
where
NTU = UA/C,,,
¢ = Coin/ Chiax

Effectiveness is independent of exchanger inlet temperatures. For
any exchanger in which ¢, is zero (where one fluid undergoing a
phase change, as in a condenser or evaporator, has an effective
c

-, = %), the effectiveness is

e=1-exp(-NTU) (48)

The mean temperature difference in Equation (44) is then given by

UL

Aty NTU

(49

After finding the heat transfer rate ¢, exit temperatures for

constant-density fluids are found from
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