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EAT transfer is energy transferred because of a temperature H difference. Energy moves from a higher-temperature region 
to a lower-temperature region by one or more of three modes: 
conduction, radiation, and convection. This chapter presents ele- 
mentary principles of single-phase heat transfer, with emphasis on 
HVAC applications. Boiling and condensation are discussed in 
Chapter 5. More specific information on heat transfer to or from 
buildings or refrigerated spaces can be found in Chapters 14 to 19, 
23, and 27 of this volume and in Chapter 13 of the 2006 ASHRAE 
Handbook-Refrigeration. Physical properties of substances can be 
found in Chapters 26,28, 32, and 33 of this volume and in Chapter 
9 of the 2006 ASHRAE Handbook-Refrigeration. Heat transfer 
equipment, including evaporators, condensers, heating and cooling 
coils, furnaces, and radiators, is covered in the 2008 ASHRAE 
Handbook-HVACSystems and Equipment. For further information 
on heat transfer, see the Bibliography. 

HEAT TRANSFER PROCESSES 

Conduction 
Consider a wall that is 10 m long, 3 m tall, and 100 mm thick 

(Figure 1A). One side ofthe wall is maintained at tSl = 25”C, and the 
other is kept at tS2 = 20°C. Heat transfer occurs at rate q through the 
wall from the warmer side to the cooler. The heat transfer mode is 
conduction (the only way energy can be transferred through a solid). 

If t,, is raised from 25 to 30°C while everything else remains the 
same, q doubles because t,, - tS2 doubles. 
If the wall is twice as tall, thus doubling the area A, of the wall, q 
doubles. 
If the wall is twice as thick, q is halved. 
From these relationships, 

q M  
(tsl - ts2)Ac 

L 

(A) (8) 

(A) Conduction and (B) Convection Fig. 1 

The preparation of this chapter is assigned to TC 1.3, Heat Transfer and 
Fluid Flow. 

where M means “proportional to” and L = wall thickness. However, 
this relation does not take wall material into account: if the wall is 
foam instead of concrete, q would clearly be less. The constant of 
proportionality is a material property, thermal conductivity k. 
Thus, 

where k has units of W/(m.K). The denominator L/(kA,) can be con- 
sidered the conduction resistance associated with the driving 
potential (t,, - t12). This is analogous to current flow through an 
electrical resistance, I = ( V ,  - V,)/R, where ( V ,  ,- V2) is driving 
potential, R is electrical resistance, and current I is rate of flow of 
charge instead of rate of heat transfer q. 

Thermal resistance has units WW. A wall with a resistance of 
5 KIW requires (tSl - t12) = 5 K for heat transfer q of 1 W. The ther- 
malielectrical resistance analogy allows tools used to solve electri- 
cal circuits to be used for heat transfer problems. 

Convection 
Consider a surface at temperature t, in contact with a fluid at t, 

(Figure 1B). Newton’s law of cooling expresses the rate of heat 
transfer from the surface of area A, as 

where h, is the heat transfer coefficient (Table 1) and has units 
of W/(m2.K). The convection resistance l/(h,Ax) has units of 
KIW. 

If t, > t,, heat transfers from the fluid to the surface, and q is writ- 
ten as just q = h,A,(t, - t,). Resistance is the same, but the sign of 
the temperature difference is reversed. 

For heat transfer to be considered convection, fluid in contact 
with the surface must be in motion; if not, the mode of heat transfer 
is conduction. If fluid motion is caused by an external force (e.g., 
fan, pump, wind), it is forced convection. If fluid motion results 
from buoyant forces caused by the surface being warmer or cooler 
than the fluid, it is free (or natural) convection. 

Table 1 Heat Transfer Coefficients by Convection Type 
Convection Type h,, W/(m2.K) 

Free, gases 2 to 25 

Forced, gases 25 to 250 
Forced, liquids 
Boiling, condensation 

Free, liquids 10 to 1000 

50 to 20 000 
2500 to 100 000 

4.1 
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Radiation 
Matter emits thermal radiation at its surface when its temperature 

is above absolute zero. This radiation is in the form of photons of 
varying frequency. These photons leaving the surface need no 
medium to transport them, unlike conduction and convection (in 
which heat transfer occurs through matter). The rate of thermal 
radiant energy emitted by a surface depends on its absolute temper- 
ature and its surface characteristics. A surface that absorbs all radi- 
ation incident upon it is called a black surface, and emits energy at 
the maximum possible rate at a given temperature. The heat emis- 
sion from a black surface is given by the Stefan-Boltzmann law: 

qemitted, black = AsuT? 

where Eb = o T ~  is the blackbody emissive power in W/m2; T, is 
absolute surface temperature, K; and o = 5.67 x 1 0-8 W/(m2 K4) is 
the Stefan-Boltzmann constant. If a surface is not black, the emis- 
sion per unit time per unit area is 

E = CUT: 

where E is emissive power, and E is emissivity, where 0 s E s 1 .  For 
a black surface, E = 1 .  

Nonblack surfaces do not absorb all incident radiation. The 
absorbed radiation is 

qabsorbed= &sG 

where absorptivity a is the fraction of incident radiation absorbed, 
and irradiation G is the rate of radiant energy incident on a surface 
per unit area of the receiving surface due to emission and reflection 
from surrounding surfaces. For a black surface, a = 1 .  

A surface's emissivity and absorptivity are often both functions 
of the wavelength distribution of photons emitted and absorbed, 
respectively, by the surface. However, in many cases, it is reason- 
able to assume that both a and E are independent of wavelength. If 
so, a = E (a gray surface). 

Two surfaces at different temperatures that can "see" each other 
can exchange energy through radiation. The net exchange rate 
depends on the surfaces' ( 1 )  relative size, (2 )  relative orientation and 
shape, (3 )  temperatures, and (4) emissivity and absorptivity. 
However, for a small area A, in a large enclosure at constant tem- 
perature t,,,,, the irradiation on A, from the surroundings is the 
blackbody emissive power of the surroundings Eb,surr So, if t, > 
t,,,,, net heat loss from gray surface A, in the radiation exchange 
with the surroundings at T,,,, is 

qnet = qemitted- qabsorbed= EAsEbs- &sEb,surr 

= EA,o(t: - t&,) ( 3 )  

where a = E for the gray surface. If t, < t,,,.,, the expression for qnet 
is the same with the sign reversed, and qnet is the net gain by A,. 

Note that qnet can be written as 

In this form, Ebs - Eb,,,,, is analogous to the driving potential in 
an electric circuit, and l/(cA,) is analogous to electrical resistance. 
This is a convenient analogy when only radiation is being consid- 
ered, but if convection and radiation both occur at a surface, convec- 
tion is described by a driving potential based on the difference in the 
first power of the temperatures, whereas radiation is described by 
the difference in the fourth power of the temperatures. In cases like 
this, it is often useful to express net radiation as 

qnet = h,As(ts - tsuw) = (ts - tsuwY(l/hrAs) (4) 

a- 

L 

I- L l  + Lz* 
Fig. 2 Interface Resistance Across Two Layers 

GAPS 

where h, = ue( t: + t&,,)(t, + t,,,,) is often called a radiation heat 
transfer coefficient. The disadvantage of this form is that h, 
depends on t,, which is often the desired result of the calculation. 

Combined Radiation and Convection 

face by convection and radiation combined is then 
When t,,,, = t, in Equation (4), the total heat transfer from a sur- 

4 = q m d  + qconv = (ts - tdAs(hr + hc) 

The temperature difference t, - t ,  is in either kelvins or "C; the dif- 
ference is the same. Either can be used; however, absolute temper- 
atures must be used to calculate h,. (Absolute temperatures are K = 
"C + 273.15.) Note that h, and h, are always positive, and that the 
direction of q is determined by the sign of (t, - tx) .  

Contact or Interface Resistance 
Heat flow through two layers encounters two conduction resis- 

tances LIIklA and L2/k2A (Figure 2). At the interface between two 
layers are gaps across which heat is transferred by a combination of 
conduction at contact points and convection and radiation across 
gaps. This multimode heat transfer process is usually characterized 
using a contact resistance coefficient Rll,nt or contact conductance 
hcont. 

where At is the temperature drop across the interface. Rl[,nt is in 
(m2.K)/W, and hcont is in W/(m2.K). The contact or interface resis- 
tance is R,,,, = R ~ o n r l A  = l l h~onrA ,  and the resistance of the two lay- 
ers combined is the sum of the resistances of the two layers and the 
contact resistance. 

Contact resistance can be reduced by lowering surface rough- 
nesses, increasing contact pressure, or using a conductive grease or 
paste to fill the gaps. 

Heat Flux 
The conduction heat transfer can be written as 

where q" is heat flux in W/m2. Similarly, for convection the heat 
flux is 

and net heat flux from radiation at the surface is 
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CONVECTION 
+ RADIATION 
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Table 2 One-Dimensional Conduction Shape Factors 

Fig. 3 Thermal Circuit 

Overall Resistance and Heat Transfer Coefficient 
In Equation (1) for conduction in a slab, Equation (4) for radia- 

tive heat transfer rate between two surfaces, and Equation (2) for 
convective heat transfer rate from a surface, the heat transfer rate is 
expressed as a temperature difference divided by a thermal resis- 
tance. Using the electrical resistance analogy, with temperature dif- 
ference and heat transfer rate instead of potential difference and 
current, respectively, tools for solving series electrical resistance 
circuits can also be applied to heat transfer circuits. For example, 
consider the heat transfer rate from a liquid to the surrounding gas 
separated by a constant cross-sectional area solid, as shown in Fig- 
ure 3. The heat transfer rate from the fluid to the adjacent surface is 
by convection, then across the solid body by conduction, and finally 
from the solid surface to the surroundings by both convection and 
radiation. A circuit using the equations for resistances in each mode 
is also shown. From the circuit, the heat transfer rate is 

where 

Resistance R, is the parallel combination of the convection and 
radiation resistances on the right-hand surface, l/h,A and l/h,A. 
Equivalently, R, = l/h,A, where h, on the air side is the sum of the 
convection and radiation heat transfer coefficients (i.e., h, = h, + h,.). 

The heat transfer rate can also be written as 

4 = UA(tf1- tf2) 
where U is the overall heat transfer coefficient that accounts for all 
the resistances involved. Note that 

Heat Transfer Thermal 
Configuration Rate Resistance 

I 

L 4, = kA,- t l  -t2 - 
L kA,  

Constant 
cross- 
sectional t, 

P I  area slab 

Hollow 
cylinder of 
length L 
with 
negligible 
heat transfer 
from end 
surfaces 

The product UA is overall conductance, the reciprocal of overall 
resistance. The surface area A on which U is based is not always 
constant as in this example, and should always be specified when 
referring to U. 

Heat transfer rates are equal from the warm liquid to the solid 
surface, through the solid, and then to the cool gas. Temperature 
drops across each part of the heat flow path are related to the resis- 
tances (as voltage drops are in an electric circuit), so that 

t f l  - ti = qR, ti - t2 = qR2 t2 - % = qR, 

THERMAL CONDUCTION 

One-Dimensional Steady-State Conduction 
Steady-state heat transfer rates and resistances for (1) a slab of 

constant cross-sectional area, (2) a hollow cylinder with radial heat 
transfer, and (3) a hollow sphere are given in Table 2. 

Fig. 4 Thermal Circuit Diagram for Insulated Water Pipe 
(Example 1) 

Example 1.  Chilled water at 5°C flows in a copper pipe with a thermal 
conductivity kp of 400 W/(m.K), with internal and external diameters of 
ID = 100 mm and OD = 120 mm. The tube is covered with insulation 
50 mm thick, with ki = 0.20 W/(m.K). The surrounding air is at ta = 

2 5 T ,  and the heat transfer coefficient at the outer surface h, = 

10 W/(m2.K). Emissivity ofthe outer surface is E = 0.85. The heat trans- 
fer coefficient inside the tube is hi = 1000 W/(m2.K). Contact resistance 
between the insulation and the pipe is assumed to be negligible. Find the 
rate of heat gain per unit length of pipe and the temperature at the pipe- 
insulation interface. 

Solution: The outer diameter of the insulation is Dins = 120 + 2(50) = 

220 mm. For L = 1 m, 



4.4 2009 ASHRAE Handbook-Fundamentals (SI) 

R , = - -  - 3.2 ww 
hixIDL 

1n(Di,,/OD) 
2 z k i L  

R3  = = 0.482 WW 

R , = - -  - 0.144 WW 
h,;lDi,,L 

Assuming insulation surface temperature ts = 2 1 T  ( i c ,  294 K )  and 
tsllrr = t, = 298.15 K ,  h,. = &o(t; + ti,,,.)(t, + t,,,,,.) = 5.0 W / ( m 2 . K ) .  

R , = - -  - 0.288 K/W 
h,.zDi,,L 

R R  
R 4 = - =  0.096 K/W 

Rr + R,  

Rror=R1 +R,+R3+R4=0.581 K/W 

Finally, the rate of heat gain by the cold water is 

t ,  - t 
qrc = Rtor - - 34.4 w 

Temperature at the pipe1insulation interface is 

ts2=t+qrc(R1 +R2)=5.1°C 

Temperature at the insulation's surface is 

ts3=ta-q,.cR4=21.70C 

which is very close to the assumed value of 22°C. 

Two- and Three-Dimensional Steady-State 
Conduction: Shape Factors 

Mathematical solutions to a number of two and three-dimensional 
conduction problems are available in Carslaw and Jaeger (1959). 
Complex problems can also often be solved by graphical or numer- 
ical methods, as described by A d a m  and Rogers (1973), Croft and 
Lilley (1977), and Patankar (1980). There are many two- and three- 
dimensional steady-state cases that can be solved using conduction 
shape factors. Using the conduction shape factor S, the heat transfer 
rate is expressed as 

q = Sk(t1 - t2) = (tl - t,)/(l/Sk) (5 )  

where k is the material's thermal conductivity, t l  and t2 are temper- 
atures of two surfaces, and l / (Sk)  is thermal resistance. Conduction 
shape factors for some common configurations are given in Table 3.  

Example 2. The walls and roof of a house are made of 200 mm thick con- 
crete with k = 0.75 W/(m.K). The inner surface is at 2 0 T ,  and the 
outer surface is at 8°C. The roof is 10 x 10 m, and the walls are 6 m 
high. Find the rate of heat loss from the house through its walls and 
roof, including edge and comer effects. 

Solution: The rate of heat transfer excluding the edges and comers is 
first determined: 

Afotai= (10-0.4)(10-0.4)+4(10-0.4)(6-0.2)=314.9m2 

~ [0.75 W / ( m . K ) ] ( 3 1 4 . 9  m2) 
(20  - 8 ) T  = 14 170 W 

0.2 m 

The shape factors for the comers and edges are in Table 2:  

Scorners+edges = 4 x s c o r n e r  + 4 x Sedge 
= 4 x 0.15L + 4 x 0.54W 
= 4 x 0.15(0.2 m )  + 4 x 0.54(9.6 m) = 20.86 m 

and the heat transfer rate is 

qcorners-edges = Scorners+edgeskAT 

= (20.86 m)[0 .75  W / ( m , K ) ] ( 2 0  - 8)"C 
= 188 W 

which leads to 

qtotoi = 14 170 W + 188 W = 14 358 W = 14.4 kW 

Note that the edges and comers are 1.3% of the total. 

Extended Surfaces 
Heat transfer from a surface can be increased by attaching fins or 

extended surfaces to increase the area available for heat transfer. A 
few common fin geometries are shown in Figures 5 to 8. Fins provide 
a large surface area in a low volume, thus lowering material costs for 
a given performance. To achieve optimum design, fins are generally 
located on the side of the heat exchanger with lower heat transfer 
coefficients (e.g., the air side of an air-to-water coil). Equipment 
with extended surfaces includes natural- and forced-convection 
coils and shell-and-tube evaporators and condensers. Fins are also 
used inside tubes in condensers and dry expansion evaporators. 

Fin Efficiency. As heat flows from the root of a fin to its tip, tem- 
perature drops because of the fin material's thermal resistance. The 
temperature difference between the fin and surrounding fluid is 
therefore greater at the root than at the tip, causing a corresponding 
variation in heat flux. Therefore, increases in fin length result in pro- 
portionately less additional heat transfer. To account for this effect, 
fin efficiency @ is defined as the ratio of the actual heat transferred 
from the fin to the heat that would be transferred if the entire fin 
were at its root or base temperature: 

4 
@ = hA,(t,.- t e )  

where q is heat transfer rate into/out of the fin's root, te is temperature 
of the surrounding environment, t, is temperature at fin root, and A, 
is surface area of the fin. Fin efficiency is low for long or thin fins, or 
fins made of low-thermal-conductivity material. Fin efficiency 
decreases as the heat transfer coefficient increases because of 
increased heat flow. For natural convection in air-cooled condensers 
and evaporators, where the air-side h is low, fins can be fairly large 
and fabricated from low-conductivity materials such as steel instead 
of from copper or aluminum. For condensing and boiling, where 
large heat transfer coefficients are involved, fins must be very short 
for optimum use ofmaterial. Fin efficiencies for a few geometries are 
shown in Figures 5 to 8. Temperature distribution and fin efficiencies 
for various fin shapes are derived in most heat transfer texts. 

Constant-Area Fins and Spines. Fins or spines with constant 
cross-sectional area [e.g., straight fins (option A in Figure 7 ) ,  cy- 
lindrical spines (option D in Figure 8)], the efficiency can be cal- 
culated as 

where 
m = JiZV@ 
P = fin perimeter 

A, = fin cross-sectional area 
W, = corrected fidspine length = W +  A,/P 

= a14 for an a x a square spine 
= yb = S/2 for a straight fin with thickness 6 

A,IP = d/4 for a cylindrical spine with diameter d 
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Table 3 
Configuration Shape Factor S, m Restriction 

Multidimensional Conduction Shape Factors 

Edge of two adjoining walls 0.54W w >  L/5 

4.5 

Comer ofthree adjoining walls (inner surface at TI and 
outer surface at T,) 

0.15L L << length 
and width of 
wall 

2.756L (11)0,078 L > w Isothermal rectangular block embedded in semi- 
infinite body with one face of block parallel to surface 
of body [ I n ( l +  $]0~59 L > > d , R H  

;IW d=O,  W > L  
Thin isothermal rectangular plate buried in semi- 
infinite medium In ( 4  W / L )  

2 x w  d>> W 

2 x w  d > 2 W  
In ( 4  W / L )  W > L  

In ( 2 x d / L )  W > > L  
Cylinder centered inside square of length L 2 x L  L>> w 

ln(0.54 W / R )  W > 2 R  

L > > R  
Isothermal cylinder buried in semi-infinite medium 2 x L  

cosh - ' (d /R)  

2 x L  L > > R  
I n ( Z d / R )  d > 3R 

d > > R  
l n 4 [ 1  - l n ( L / Z d ) ]  L >> d 

2 x L  

R I n ( L / R )  

2 x L  - L > > d  
Horizontal cylinder of length L midway between two 
infinite, parallel, isothermal surfaces 

In(') 

Isothermal sphere in semi-infinite medium 4 x R  
1 ~ ( R / 2 d )  

Isothermal sphere in infinite medium 4xR 
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Empirical Expressions for Fins on Tubes. Schmidt ( 1  949) pres- 
ents approximate, but reasonably accurate, analytical expressions 
(for computer use) for the fin efficiency of circular, rectangular, and 
hexagonal arrays of fins on round tubes, as shown in Figures 5, 9, 
and 10, respectively. Rectangular fin arrays are used for an in-line 
tube arrangement in finned-tube heat exchangers, and hexagonal 
arrays are used for staggered tubes. Schmidt's empirical solution is 
given by 

tanh(mrbZ) 
@ = mrbZ 

where Yb  is tube radius, m = -8, 6 = fin thickness, and Z is 
given by 

Z =  [ ( r e l y b ) -  1 ] [ 1  +0.35 ln(re/rb)] 

where re is the actual or equivalent fin tip radius. For circular fins, 
re /rb is the actual ratio of fin tip radius to tube radius. For rectangu- 
lar fins (Figure 9),  

r e / r b  = 1 . 2 8 Y J m  Y = M / r b  fI = L / M >  1 

where M and L are defined by Figure 9 as a/2 or bl2, depending on 
which is greater. For hexagonal fins (Figure l o ) ,  

r e / r b  = 1 . 2 7 Y J m  

0 0 0  
Fig. 9 Rectangular Tube Array 

where Y and fI are defined as previously, and Mand L are defined by 
Figure 10 as a/2 or b (whichever is less) and 0 . 5 J w ,  
respectively. 

For constant-thickness square fins on a round tube ( L  = Min Fig- 
ure 9),  the efficiency of a constant-thickness annular fin of the same 
area can be used. For more accuracy, particularly with rectangular 
fins of large aspect ratio, divide the fin into circular sectors as 
described by Rich (1966). 

Other sources of information on finned surfaces are listed in the 
References and Bibliography. 

Surface Efficiency. Heat transfer from a finned surface (e.g., a 
tube) that includes both fin area A, and unfinned or prime area A, is 
given by 

4 = @,Ap + @h,A,)(t, - t,) (9 )  

Assuming the heat transfer coefficients for the fin and prime sur- 
faces are equal, a surface efficiency @s can be derived as 

where A = A, + A, is the total surface area, the sum of the fin and 
prime areas. The heat transfer in Equation (8) can then be written as 

where l/(@,hA) is the finned surface resistance. 

Example 3. An aluminum tube with k = 186 W/(m.K), ID = 45 mm, and 
OD = 50 mm has circular aluminum fins 6 = 1 mm thick with an outer 
diameter of Djn = 100 mm. There are N '  = 250 fins per metre of tube 
length. Steam condenses inside the tube at ti = 200°C with a large heat 
transfer coefficient on the inner tube surface. Air at t ,  = 25°C is 
heated by the steam. The heat transfer coefficient outside the tube is 
40 W/(m2.K). Find the rate of heat transfer per metre of tube length. 

Solution: From Figure 5's efficiency curve, the efficiency of these cir- 
cular fins is 

I$ = 0.89 I W = (Dfin -OD)/2  = (0.10-0.05)/2 = 0.025 m 

XJX, = 0.10/0.05 = 2.0 

W F  = 0,025J- = 0.52 
k(6/2)  [186 W/(m.K)](0.0005 m)  

The fin area for L = 1 m is 

2 A,  = 250 x 2jl(Djn - OD2)/4 = 2.945 m2 

The unfinned area for L = 1 m is 

A p = z  x OD xL(1 - N ' 6 ) = ~ ~ ( 0 . 0 5 m ) ( l  m)(l - 2 5 0 ~  0.001) 
= 0.1 18 m2 

and the total area A = A ,  + Ap = 3.063 m2. Surface efficiency is 

and resistance of the finned surface is 

Tube wall resistance is 

ln(OD/ID) = In(5/4.5) 
~ T c L ~ , , , ~ ,  2 z ( l  m)[186 W/(m.K)] R w d  = 

Fig. 10 Hexagonal Tube Array 

= 9.02 lo-' ww 
The rate of heat transfer is then 
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ti - t ,  

Rs + Rwdi 
4 = - -  - 18 981 W 

Had Schmidt's approach been used for fin efficiency, 

m = &%% = 20.74 m-' rb = OD/2 = 0.025 m 
Z =  [(Dj,/OD) ~ 11 [ l  + 0.35 ln(Djn/OD)] = 1.243 

the same i$ as given by Figure 5. 

Contact Resistance. Fins can be extruded from the prime sur- 
face (e.g., short fins on tubes in flooded evaporators or water-cooled 
condensers) or can be fabricated separately, sometimes of a differ- 
ent material, and bonded to the prime surface. Metallurgical bonds 
are achieved by furnace-brazing, dip-brazing, or soldering; nonme- 
tallic bonding materials, such as epoxy resin, are also used. 
Mechanical bonds are obtained by tension-winding fins around 
tubes (spiral fins) or expanding the tubes into the fins (plate fins). 
Metallurgical bonding, properly done, leaves negligible thermal 
resistance at the joint but is not always economical. Contact resis- 
tance of a mechanical bond may or may not be negligible, depend- 
ing on the application, quality of manufacture, materials, and 
temperatures involved. Tests of plate-fin coils with expanded tubes 
indicate that substantial losses in performance can occur with fins 
that have cracked collars, but negligible contact resistance was 
found in coils with continuous collars and properly expanded tubes 
(Dart 1959). 

Contact resistance at an interface between two solids is largely a 
function of the surface properties and characteristics of the solids, 
contact pressure, and fluid in the interface, if any. Eckels (1977) 
modeled the influence of fin density, fin thickness, and tube diameter 
on contact pressure and compared it to data for wet and dry coils. 
Shlykov (1964) showed that the range of attainable contact resis- 
tances is large. Sonokama (1964) presented data on the effects of 
contact pressure, surface roughness, hardness, void material, and the 
pressure of the gas in the voids. Lewis and Sauer (1965) showed the 
resistance of adhesive bonds, and Clausing (1964) and Kaspareck 
(1 964) gave data on the contact resistance in a vacuum environment. 

Transient Conduction 
Often, heat transfer and temperature distribution under transient 

(i.e., varying with time) conditions must be known. Examples are 
(1) cold-storage temperature variations on starting or stopping a 
refrigeration unit, (2) variation of external air temperature and solar 
irradiation affecting the heat load of a cold-storage room or wall 
temperatures, (3) the time required to freeze a given material under 
certain conditions in a storage room, (4) quick-freezing objects by 
direct immersion in brines, and ( 5 )  sudden heating or cooling of flu- 
ids and solids from one temperature to another. 

Lumped Mass Analysis. Often, the temperature within a mass 
of material can be assumed to vary with time but be uniform within 
the mass. Examples include a well-stirred fluid in a thin-walled con- 
tainer, or a thin metal plate with high thermal conductivity. In both 
cases, if the mass is heated or cooled at its surface, the temperature 
can be assumed to be a function of time only and not location within 
the body. Such an approximation is valid if 

where 
Bi = Biot number 
h = surface heat transfer coefficient 
V = material's volume 

A,  = surface area exposed to convective and/or radiative heat transfer 
k = material's thermal conductivity 

The temperature is given by 

dt  
M c p ~  = q n e t  + q g e n  

where 
M = body mass 
cp = specific heat 

ygen = internal heat generation 
yner = net heat transfer rate to substance (into substance is positive, 

Equation (12) applies to liquids and solids. If the material is a gas 
being heated or cooled at constant volume, replace cp with the 
constant-volume specific heat cy.  The term qnet may include heat 
transfer by conduction, convection, or radiation and is the difference 
between the heat transfer rates into and out of the body. The term 
qgen may include a chemical reaction (e.g., curing concrete) or heat 
generation from a current passing through a metal. 

For a lumped mass Minitially at a uniform temperature to that is 
suddenly exposed to an environment at a different temperature t,, 
the time taken for the temperature of the mass to change to t,is given 
by the solution of Equation (1 2) as 

and out of substance is negative) 

t f -  t ,  - hA,r In---- 
to- t ,  MCP 

where 
M = mass of solid 
cp = specific heat of solid 
A,  = surface area of solid 
h = surface heat transfer coefficient 
T = time required for temperature change 
t f  = final solid temperature 
to = initial uniform solid temperature 
t ,  = surrounding fluid temperature 

Example 4. A copper sphere with diameter d = 1 mm is to be used as a 
sensing element for a thermostat. It is initially at a uniform temperature 
of to = 21 "C. It is then exposed to the surrounding air at t ,  = 20°C. The 
combined heat transfer coefficient is h = 60 W/(m2 K). Determine the 
time taken for the temperature of the sensing element to reach t f =  
20.5"C. The properties of copper are 

p = 8933 kg/m3 cp = 385 J/(kg.K) k =  401 W/(m,K) 

Solution: Bi = h(d/2)/k = 60.35(0.001/2)/401 = 7.5 x 
much less than 1.  Therefore, lumped analysis is valid. 

which is 

M =  p[4~(d/2)~/3]  = 4.677 x 1 O@ kg 

As = x d 2  = 3.142 x m2 

Using Equation (13), T = 6.6 s. 

Nonlumped Analysis. When the Biot number is greater than 0.1, 
variation of temperature with location within the mass is significant. 
One example is the cooling time of meats in a refrigerated space: the 
meat's size and conductivity do not allow it to be treated as a lumped 
mass that cools uniformly. Nonlumped problems require solving 
multidimensional partial differential equations. Many common 
cases have been solved and presented in graphical forms (Jakob 
1949, 1957; Myers 1971; Schneider 1964). In other cases, numeri- 
cal methods (Croft and Lilley 1977; Patankar 1980) must be used. 

Estimating Cooling Times for One-Dimensional Geometvies. 
When a slab of thickness 2L or a solid cylinder or solid sphere with 
outer radius rm is initially at a uniform temperature t l ,  and its surface 
is suddenly heated or cooled by convection with a fluid at t,, a math- 
ematical solution is available for the temperature t as a function of 
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Table 4 Values of c1 and p1 in Equations (14) to (17) 
Slab Solid Cylinder Solid Sphere 

Bi C1 P1 
0.5 1.0701 0.6533 
1.0 1.1191 0.8603 
2.0 1.1785 1.0769 
4.0 1.2287 1.2646 
6.0 1.2479 1.3496 
8.0 1.2570 1.3978 
10.0 1.2620 1.4289 
30.0 1.2717 1.5202 
50.0 1.2727 1.5400 

C1 

1.1143 
1.207 1 
1.3384 
1.4698 
1.5253 
1.5526 
1.5677 
1.5973 
1.6002 

P1 
0.9408 
1.2558 
1.5995 
1.9081 
2.0490 
2.1286 
2.1795 
2.3261 
2.3572 

C1 

1.1441 
1.2732 
1.4793 
1.7202 
1.8338 
1.8920 
1.9249 
1.9898 
1.9962 

P1 
1.1656 
1.5708 
2.0288 
2.4556 
2.6537 
2.7654 
2.8363 
3.0372 
3.0788 

location and time t. The solution is an infinite series. However, after 
a short time, the temperature is very well approximated by the first 
term of the series. The single-term approximations for the three 
cases are of the form 

where 
t - t x  

y = -  
tl - tx 

to = temperature at center of slab, cylinder, or sphere 

Fo = QT/L~ = Fourier number 
Q =thermal diffusivity of solid = k/pcp 

L, = L for slab, r, for cylinder, sphere 
n = xiL for slab, r/r,,, for cylinder 

e l ,  pl = coefficients that are functions of Bi 
Bi = Biot number = hL,/k 

f ( p l n )  = function of pin, different for each geometry 
x = distance from midplane of slab of thickness 2L cooled on both 

p = density of solid 
ep = constant pressure specific heat of solid 
k = thermal conductivity of solid 

sides 

The single term solution is valid for Fo > 0.2. Values of c1 and p1 
are given in Table 4 for a few values of Bi, and Couvillion (2004) 
provides a procedure for calculating them. Expressions for c1 for 
each case, along with the functionf( pin), are as follows: 

Slab 

Long solid cylinder 

where Jo is the Bessel function of the first kind, order zero. It is 
available in math tables, spreadsheets, and software packages. 
Jo(0) = 1. 

Solid sphere 

These solutions are presented graphically (McAdams 1954) by 
Gurnie-Lurie charts (Figures 11 to 13). The charts are also valid for 
Fo < 0.2. 

Example 5. Apples, approximated as 0.60 mm diameter solid spheres and 
initially at 30T, are loaded into a chamber maintained at 0°C. If the 
surface heat transfer coefficient h = 14 W/(m2.K), estimate the time 
required for the center temperature to reach t = 1 "C. 

Properties of apples are 

p = 830 kg/m3 

cp = 3600 J/(kg.K) 

k = 0.42 W/(m2,K) 

Y, = d/2 = 30 mm = 0.03 m 

Solution: Assuming that it will take a long time for the center tempera- 
ture to reach I T ,  use the one-term approximation Equation (14). From 
the values given, 

- 1.406 x m2/s k 
Q = - = 0.42 

pep 830x3600 

From Equations (14) and (17) with lim(sin O/O) = 1, Y = Yo = 

el  exp(-p21Fo). For Bi = 1, from Table 4, e l=  1.2732 and pl = 1.5708. 
Thus, 

Fo = - 1 1 n Y  = - - 1n0.0333 = 1.476 = = 

p; ' 1  1.5708, 
0.00545~ 

r, 2 (0.1967/2)2 

T = 2.62 h 

Note that Fo = 0.2 corresponds to an actual time of 1280 s. 

Multidimensional Cooling Times. One-dimensional transient 
temperature solutions can be used to find the temperatures with two- 
and three-dimensional temperatures of solids. For example, con- 
sider a solid cylinder of length 2L and radius rm exposed to a fluid 
at tc on all sides with constant surface heat transfer coefficients h, on 
the end surfaces and h2 on the cylindrical surface, as shown in Fig- 
ure 14. 

The two-dimensional, dimensionless temperature Y(xl ,rl,r) can 
be expressed as the product of two one-dimensional temperatures 

Y ,  = dimensionless temperature of constant cross-sectional area slab 
at (x,,~), with surface heat transfer coefficient h, associated with 
two parallel surfaces 

surface heat transfer coefficient h, associated with cylindrical 
surface 

Yl(X1,4 x Y2(r1,t), where 

Y2 = dimensionless temperature of solid cylinder at (rl,T) with 

From Figures 11 and 12 or Equations (14) to (16), determine Yl at 
(xllL, atIL2, hlL/k) and Y2 at (rl/rm, arlr2,, h2rm/k). 

Example 6. A 70 mm diameter by 125 mm high soda can, initially at tl  = 

30T, is cooled in a chamber where the air is at t ,  = 0°C. The heat 
transfer coefficient on all surfaces is h = 20 W/(m2.K). Determine the 
maximum temperature in the can T = 1 h after starting the cooling. 
Assume the properties of the soda are those of water, and that the soda 
inside the can behaves as a solid body. 

Solution: Because the cylinder is short, the temperature of the soda is 
affected by the heat transfer rate from the cylindrical surface and end 
surfaces. The slowest change in temperature, and therefore the maxi- 
mum temperature, is at the center of the cylinder. Denoting the dimen- 
sionless temperature by 5 

where Ycyi is the dimensionless temperature of an infinitely long 70 mm 
diameter cylinder, and YpI is the dimensionless temperature of a 
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Bipi = hL/k= 20 x 0.062510.5894 = 2.121 t r  h2, tc 

h2, fc  

Fig. 14 Solid Cylinder Exposed to Fluid 

125 mm thick slab. Each of them is found from the appropriate Biot 
and Fourier number. For evaluating the properties of water, choose a 
temperature of 15°C and a pressure of 101.35 kPa. The properties of 
water are 

p = 999.1 kg/m3 k =  0.5894 W/(m.K) cp = 4184 J/(kg'K) 

a = k/p = 1.41 x 1 OW7 m2/s T = 3600 s 

1. Determine Ycyi at n = 0. 

Bi,,= h r , / k = 2 0  x 0.035/0.5894 = 1.188 

Fo,, = adr,,? = (1.41 x lo-') x 3600/0.0352 = 0.4144 

Fop,= 1.41 x x 3600/0.06252= 0.1299 

Fop/ < 0.2, so the one-term approximation is not valid. Using Figure 
11,  Yp[ = 0.9705. Thus, 

Y = 0.572 x 0.9705 = 0.5551 = ( t  ~ t,)/(tl ~ t,) t = 16.7"C 

Note: The solution may not be exact because convective motion of the 
soda during heat transfer has been neglected. The example illustrates 
the use of the technique. For well-stirred soda, with uniform tempera- 
ture within the can, the lumped mass solution should be used. 

THERMAL RADIATION 

Radiation, unlike conduction and convection, does not need a 
solid or fluid to transport energy from a high-temperature surface to 
a lower-temperature one. (Radiation is in fact impeded by such a 
material.) The rate of radiant energy emission and its characteristics 
from a surface depend on the underlying material's nature, micro- 
scopic arrangement, and absolute temperature. The rate of emission 
from a surface is independent of the surfaces surrounding it, but the 
rate and characteristics of radiation incident on a surface do depend 
on the temperatures and spatial relationships of the surrounding sur- 
faces. 

Fo,/ > 0.2, so use the one-term approximation with Equations (14) Blackbody Radiation 
The total energy emittedper unit time per unit area of a black sur- 

face is called the blackbody emissive power W, and is given by the 
Stefan-Bokzmann law: 

and (16). 

Ycyi = CI exP(-lr21FOcy/)JO(0) 

Interpolating in Table 4 for Bi,, = 1 . I  88, p,, = 1.3042, Jo(0) = 1, 
cCy/ = 1.237, Ycy/ = 0.572. 

(18) W, = o T 4  2. Determine Yp/ at n = 0. 
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where o = 5.670 x lo-* W/(m2.K4) is the Stefan-Boltzmann con- 
stant. 

Energy is emitted in the form of photons or electromagnetic 
waves of many different frequencies or wavelengths. Planck showed 
that the spectral distribution of the energy radiated by a blackbody is 

where 
Wbh = blackbody spectral (monochromatic) emissive power, W/m3 
h = wavelength, m 
T = temperature, K 

Cl = first Planck’s law constant = 3.742 x 1 0-l6 W,m2 
C2 = second Planck’s law constant = 0.014 388 m.K 

The blackbody spectral emissive power W,, is the energy 
emitted per unit time per unit surface area at wavelength h per unit 
wavelength band around h; that is, the energy emitted per unit time 
per unit surface area in the wavelength band dh is equal to WbLdh. 
The Stefan-Boltzmann law can be obtained by integrating Equation 
(19) over all wavelengths: 

CE 

IWbbhdh = o T 4  = W, 
0 

Wien showed that the wavelength h,,,, at which the monochro- 
matic emissive power is a maximum (not the maximum wave- 
length), is given by 

h,,T= 2898 pm,K (20) 

Equation (20) is Wien’s displacement law; the maximum spectral 
emissive power shifts to shorter wavelengths as temperature in- 
creases, such that, at very high temperatures, significant emission 
eventually occurs over the entire visible spectrum as shorter wave- 
lengths become more prominent. For additional details, see Incrop- 
era et al. (2007). 

Actual Radiation 
The blackbody emissive power wb and blackbody spectral emis- 

sive power wb, are the maxima at a given surface temperature. 
Actual surfaces emit less and are called nonblack. The emissive 
power W of a nonblack surface at temperature T radiating to the 
hemispherical region above it is given by 

W =  (21) 

where E is the total emissivity. The spectral emissive power W, of 
a nonblack surface is given by 

where E, is the spectral emissivity, and We, is given by Equation 
(19). The relationship between E and E, is given by 

or 

3c 

E = - 1 JE,Wbhdh 
o T 4  

If E~ does not depend on h, then, from Equation (23), E = E,, and 
the surface is called gray. Gray surface characteristics are often 
assumed in calculations. Several classes of surfaces approximate 

this condition in some regions of the spectrum. The simplicity is 
desirable, but use care, especially if temperatures are high. Grayness 
is sometimes assumed because of the absence of information relat- 
ing E, as a function of h.  

Emissivity is a function of the material, its surface condition, and 
its surface temperature. Table 5 lists selected values; Modest (2003) 
and Siege1 and Howell (2002) have more extensive lists. 

When radiant energy reaches a surface, it is absorbed, reflected, 
or transmitted through the material. Therefore, from the first law of 
thermodynamics, 

a + p + r = l  

where 
Q = absorptivity (fraction of incident radiant energy absorbed) 
p = reflectivity (fraction of incident radiant energy reflected) 
T = transmissivity (fraction of incident radiant energy transmitted) 

This is also true for spectral values. For an opaque surface, r = 0 and 
p + a = l . F o r a b l a c k s u r f a c e , a = l , p = O , a n d r = O .  

Kirchhoff’s law relates emissivity and absorptivity of any 
opaque surface from thermodynamic considerations; it states that, 
for any surface where incident radiation is independent of angle or 
where the surface emits diffusely, E~ = a,. If the surface is gray, or 
the incident radiation is from a black surface at the same tempera- 
ture, then E = a as well, but many surfaces are not gray. For most sur- 
faces listed in Table 5 ,  the total absorptivity for solar radiation is 
different from the total emissivity for low-temperature radiation, 
because E~ and ah vary with wavelength. Much solar radiation is at 
short wavelengths. Most emissions from surfaces at moderate tem- 
peratures are at longer wavelengths. 

Platinum black and gold black are almost perfectly black and 
have absorptivities of about 98% in the infrared region. A small 
opening in a large cavity approaches blackbody behavior because 
most of the incident energy entering the cavity is absorbed by 
repeated reflection within it, and very little escapes the cavity. Thus, 
the absorptivity and therefore the emissivity of the opening are close 
to unity. Some flat black paints also exhibit emissivities of 98% over 
a wide range of conditions. They provide a much more durable 
surface than gold or platinum black, and are frequently used on radi- 
ation instruments and as standard reference in emissivity or reflec- 
tance measurements. 

Example 7. In outer space, the solar energy flux on a surface is 1150 W/m2. 
Two surfaces are being considered for an absorber plate to be used on 
the surface of a spacecraft: one is black, and the other is specially 
coated for a solar absorptivity of 0.94 and infrared emissivity of 0.1, 
Coolant flowing through the tubes attached to the plate maintains the 
plate at 340 K. The plate surface is normal to the solar beam. For each 
surface, determine the (1) heat transfer rate to the coolant per unit area 
of the plate, and (2) temperature of the surface when there is no coolant 
flow. 

Solution: For the black surface, 

E = Q = l , p = O  

Absorbed energy flux = 1 150 W/mZ 
At T, = 340 K, emitted energy flux = Wb = 5.67 x x 3404 = 

In space, there is no convection, so an energy balance on the surface 
757.7 W/mZ. 

gives 

Heat flux to coolant = Absorbed energy flux - Emitted energy flux 
= 1150 ~ 757.7 = 392.3 W/mZ 

For the special surface, use solar absorptivity to determine the 
absorbed energy flux, and infrared emissivity to calculate the emitted 
energy flux. 

Absorbed energy flux = 0.94 x 1150 = 1081 W/m2 
Emitted energy flux = 0.1 x 757.7 = 75.8 W/m2 
Heat flux to coolant = 1081 - 75.8 = 1005 W/m2 
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Table 5 Emissivities and Absorptivities of Some Surfaces 

Total Hemispherical Solar 
Surface Emissivity Absorptivity* 

Aluminum 
Foil, bright dipped 
Alloy: 606 1 
Rooting 

Asphalt 
Brass 

Oxidized 
Polished 

Brick 
Concrete, rough 

Copper 
Electroplated 
Black oxidized in Ebanol C 
Plate, oxidized 

Polished 
Pyrex 
Smooth 

Granite 
Gravel 
Ice 
Limestone 
Marble 

Glass 

Polished or white 
Smooth 

Mortar, lime 
Nickel 

Electroplated 
Solar absorber, electro-oxidized 

on copper 
Paints 

Black 
Parsons optical, silicone high 

Gloss 
Enamel, heated 1000 h at 650 K 

heat, epoxy 

Silver chromatone 
White 

Acrylic resin 
Gloss 

Epoxy 
Paper, roofing or white 
Plaster, rough 
Refractory 
Sand 
Sandstone, red 
Silver, polished 
Snow, fresh 
Soil 
Water 
White potassium zirconium silicate 

0.03 
0.04 
0.24 
0.88 

0.60 
0.04 
0.90 
0.91 

0.03 
0.16 
0.76 

0.87 to 0.92 
0.80 
0.91 
0.44 
0.30 

0.96 to 0.97 
0.92 

0.89 to 0.92 
0.56 
0.90 

0.03 
0.05 to 0.1 1 

0.87 to 0.92 

0.90 
0.80 
0.24 

0.90 
0.85 
0.85 

0.88 to 0.86 
0.89 

0.90 to 0.94 
0.75 
0.59 
0.02 
0.82 
0.94 
0.90 
0.87 

0.10 
0.37 

0.60 

0.47 
0.91 

0.22 
0.85 

0.94 to 0.97 

0.20 

0.26 

0.25 

0.13 

0.98 
0.13 

Source: Mills (1999) 
*Values are for extraterrestrial conditions, except for concrete; snow, and water. 

Without coolant flow, heat flux to the coolant is zero. Therefore, 
absorbed energy flux = emitted energy flux. For the black surface, 

1150 = 5.67 x 

For the special surface, 

x T? 3 T, = 377.1 K 

0 . 9 4 ~  1150=0.1 ~ 5 . 6 7 ~  1 0 - * x T ? ~ T s = 6 6 0 . 8 K  

Angle Factor 
The foregoing discussion addressed emission from a surface and 

absorption of radiation leaving surrounding surfaces. Before radia- 
tion exchange among a number of surfaces can be addressed, the 
amount of radiation leaving one surface that is incident on another 
must be determined. 

The fraction of all radiant energy leaving a surface i that is 
directly incident on surface k is the angle factor Fjk (also known as 
view factor, shape factor, and configuration factor). The angle 
factor from area A, to area Aj, Fki, is similarly defined, merely by 
interchanging the roles of i and k. The following relations assume 

All surfaces are gray or black 
Emission and reflection are diffuse (i,e,, not a function of direc- 

Properties are uniform over the surfaces 
Absorptivity equals emissivity and is independent of temperature 

Material located between radiating surfaces neither emits nor 

These assumptions greatly simplify problems, and give good 
approximate results in many cases. Some of the relations for the 
angle factor are given below. 

Reciprocity relation. 

tion) 

of source of incident radiation 

absorbs radiation 

Decomposition relation. For three surfaces i, j ,  and k, with Aii 
indicating one surface with two parts denoted by Ai and Aj, 

Law of corresponding corners. This law is discussed by Love 

Summation rule. For an enclosure with n surfaces, some of 
(1968) and Suryanarayana (1995). Its use is shown in Example 8. 

which may be inside the enclosure, 
n 

C F i k  = 1 
k= 1 

Note that a concave surface may “see itself,” and Fii z 0 for such a 
surface. 

Numerical values of the angle factor for common geometries are 
given in Figure 15. For equations to compute angle factors for many 
configurations, refer to Siege1 and Howell (2002). 

Example 8. A picture window, 3 m long and 1.8 m high, is installed in a 
wall as shown in Figure 16. The bottom edge of the window is on the 
floor, which is 6 by 10 m. Denoting the window by 1 and the floor by 
234, find F234.1. 

Solution: From decomposition rule, 

A234F234-1 = + + A4F4-1 

By symmetry, A2F2.1 = A4F4.l and A234.l = A3F3.l + 2A2F2.1. 

A23F23-15 = 

+ A3F3.1 + A3F3.5 

From the law of corresponding comers, A2F2., = A3F3.,, so there- 
fore A23F23.5 = A2F2., + A3F3., + 2A2F2.,. Thus, 

A234F234-1 + A 2 3 F 2 3 - 1 5 p A 2 F 2 - 5 p A 3 F 3 - l  =A23F23-15 

A234 = 60 m2 A,, = 45 m2 A, = 15 m2 

From Figure 15A with Y/X = 10/6 = 1.67 and Z/X = 1 N 4 . 5  = 0.4, 
F23l5=0.061. With Y/X= 10/1.5=6.66andZ/X= 1.8/1.5= 1.2,F25 = 

0.041. Substituting the values, F234.1 = 1/60(45 x 0.061 - 15 x 0.041) = 

0.036. 
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A surface A ,  radiates energy at a rate independent of its surround- 
ings. It absorbs and reflects incident radiation from surrounding 
surfaces at a rate dependent on its absorptivity. The net heat transfer 
rate qr is the difference between the rate radiant energy leaves the 
surface and the rate of incident radiant energy; it is the rate at which 
energy must be supplied from an external source to maintain the 
surface at a constant temperature. The net radiant heat flux from a 

18m 
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surface A ,  is denoted by 4’:. 
Several methods have been developed to solve specific radiant 
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exchange problems. The radiosity method and thermal circuit 
method are presented here. 

Consider the heat transfer rate from a surface of an n-surface 
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where Gi is the total rate of radiant energy incident on surface i per 
unit area. For opaque gray surfaces, the reflectivity is 

p . = l - a  I = 1 -  E l  

Thus. 

J, = EiW, + ( 1 -  €,)GI (26) 

Note that for a black surface, E = 1 ,  p = 0,  and J = W,. 

total energy leaving the surface and the total incident energy: 
The net radiant energy transfer qi is the difference between the 

Eliminating Gi between Equations (26) and (27), 

W,i - Ji 
q ,  = 

(1  - c i ) / c iA i  

Radiosity Method. Consider an enclosure of n isothermal sur- 
faces with areas of A, ,  A,, . . ., A,,, and emissivities of c l ,  E ~ ,  . . ., E,, 

respectively. Some may be at uniform but different known tem- 
peratures, and the remaining surfaces have uniform but different 
and known heat fluxes. The radiant energy flux incident on a surface 
Gi is the sum of the radiant energy reaching it from each of the n 
surfaces: 

Substituting Equation (29) into Equation (26), 

n 

Combining Equations (30) and (28), 

Note that in Equations (30) and ( 3 1 ) ,  the summation includes 
surface i. 

Equation (30) is for surfaces with known temperatures, and 
Equation (31) for those with known heat fluxes. An opening in the 
enclosure is treated as a black surface at the temperature of the sur- 
roundings. The resulting set of simultaneous, linear equations can 
be solved for the unknown Jis. 

Once the radiosities (J i s )  are known, the net radiant energy trans- 
fer to or from each surface or the emissive power, whichever is 
unknown is determined. 

For surfaces where Ebi is known and qi is to be determined, use 
Equation (28) for a nonblack surface. For a black surface, Ji = Wbi 
and Equation (3 1) can be rearranged to give 

At surfaces where qi is known and Ehi is to be determined, rear- 
range Equation (28): 

(33) 

The temperature of the surface is then 

1 / 4  
Ti = (2) (34) 

A surface in radiant balance is one for which radiant emission is 
balanced by radiant absorption (i.e., heat is neither removed from 
nor supplied to the surface). These are called reradiating, insu- 
lated, or refractory surfaces. For these surfaces, ql = 0 in Equation 
(3 1). After solving for the radiosities, Wbi can be found by noting 
that qi = 0 in Equation (33) gives w h ,  =Ji.  

Thermal Circuit Method. Another method to determine the 
heat transfer rate is using thermal circuits for radiative heat transfer 
rates. Heat transfer rates from surface i to surface k and surface k to 
surface i, respectively, are given by 

Using the reciprocity relation = A,F,,, the net heat transfer 
rate from surface i to surface k is 

Equations (28) and (35) are analogous to the current in a resis- 
tance, with the numerators representing a potential difference and 
the denominator representing a thermal resistance. This analogy can 
be used to solve radiative heat transfer rates among surfaces, as 
illustrated in Example 9. 

Using angle factors and radiation properties as defined assumes 
that the surfaces are diffuse radiators, which is a good assumption 
for most nonmetals in the infrared region, but poor for highly pol- 
ished metals. Subdividing the surfaces and considering the variation 
of radiation properties with angle of incidence improves the approx- 
imation but increases the work required for a solution. Also note that 
radiation properties, such as absorptivity, have significant uncer- 
tainties, for which the final solutions should account. 

Example 9. Consider a 4 m wide, 5 m long, 2.5 m high room as shown in 
Figure 17. Heating pipes, embedded in the ceiling ( l ) ,  keep its temper- 
ature at 40°C. The floor (2) is at 3 0 T ,  and the side walls (3) are at 
18°C. The emissivity of each surface is 0.8. Determine the net radiative 
heat transfer rate toifrom each surface. 

Solution: Consider the room as a three-surface enclosure. The corre- 
sponding thermal circuit is also shown. The heat transfer rates are 
found after finding the radiosity of each surface by solving the thermal 
circuit. 

From Figure 15A, 

Fig. 17 Diagrams for Example 9 
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From the summation rule, F,., + F,., + Fl.3 = 1, With F,., = 0, 

Fl.3 = 1 - F,., = 0.624 = F2.3 

0.0125 rn-, = R, 1 - € 1  1-0 .8  
A l E l  

R , = -  -=- 
0.005 556 m-, 

1 - E 3  - 1-0.8 - R3= - - -- 
A3E3 45 x 0.8 

R,,= 1 = -- -0.133 m-, 
A , F , ,  20 x 0.376 

Performing a balance on each of the three J, nodes gives 

w 6 1 - J l + J 2 - J 1 + J 3 - J 1  - Surface 1: - - - - 
R l  R12 R13 

w b 2 - J 2 + J l - J 2 + J 3 - J 2  = 0 Surface 2: - - - 
R 2  R12 R23 

w 6 3 - J 3 + J 1 - J 3 + J 2 - J 3  - 0 Surface 3: - - - - 
R 3  R13  R 2 3  

W 6 ,  = 5.67 x lo-* x 313.24 = 545.6 Wlm’ 

Wb, = 479.2 W/m2 Wb3 = 407.7 W/m2 

Substituting the values and solving for J , ,  J,, and J3, 

J ,  = 524.5 Wlm2 J, = 475.1 W/m2 J3 = 418.9 Wlm2 

w b l - J l  - 545.6-524.5 = 1688 
91=R,- 0.0125 

9, = 328 W q3 =-2016 W 

Radiation in Gases 
Monatomic and diatomic gases such as oxygen, nitrogen, hydro- 

gen, and helium are essentially transparent to thermal radiation. 
Their absorption and emission bands are confined mainly to the 
ultraviolet region of the spectrum. The gaseous vapors of most 
compounds, however, have absorption bands in the infrared region. 
Carbon monoxide, carbon dioxide, water vapor, sulfur dioxide, am- 
monia, acid vapors, and organic vapors absorb and emit significant 
amounts of energy. 

Radiation exchange by opaque solids may be considered a sur- 
face phenomenon unless the material is transparent or translucent, 
though radiant energy does penetrate into the material. However, 
the penetration depths are small. Penetration into gases is very sig- 
nificant. 

Beer’s law states that the attenuation of radiant energy in a gas is 
a function of the product pgL  of the partial pressure of the gas and 
the path length. The monochromatic absorptivity of a body of gas of 
thickness L is then 

Because absorption occurs in discrete wavelength bands, the 
absorptivities of all the absorption bands must be summed over the 
spectral region corresponding to the temperature of the blackbody 
radiation passing through the gas. The monochromatic absorption 
coefficient ah is also a function of temperature and pressure of the 
gas; therefore, detailed treatment of gas radiation is quite complex. 

Table 6 Emissivity of C 0 2  and Water Vapor in Air at 24OC 

Path Length, “2, %l by Relative Humidity, YO 
m 0.1 0.3 1.0 10 50 100 

3 0.03 0.06 0.09 0.06 0.17 0.22 
30 0.09 0.12 0.16 0.22 0.39 0.47 

300 0.16 0.19 0.23 0.47 0.64 0.70 

Table 7 Emissivity of Moist Air and CO, in Typical Room 

Relative Humidity, YO EP 

10 
50 
75 

0.10 
0.19 
0.22 

Estimated emissivity for carbon dioxide and water vapor in air at 
24°C is a function of concentration and path length (Table 6). Values 
are for an isothermal hemispherically shaped body of gas radiating 
at its surface. Among others, Hottel and Sarofim (1967), Modest 
(2003), and Siege1 and Howell (2002) describe geometrical cal- 
culations in their texts on radiation heat transfer. Generally, at low 
values ofpgL, the mean path length L (or equivalent hemispherical 
radius for a gas body radiating to its surrounding surfaces) is four 
times the mean hydraulic radius of the enclosure. A room with a 
dimensional ratio of 1: 1 :4 has a mean path length of 0.89 times the 
shortest dimension when considering radiation to all walls. For a 
room with a dimensional ratio of 1:2:6, the mean path length for the 
gas radiating to all surfaces is 1.2 times the shortest dimension. The 
mean path length for radiation to the 2 by 6 face is 1.18 times the 
shortest dimension. These values are for cases where the partial 
pressure of the gas times the mean path length approaches zero 
( p g L  J 0). The factor decreases with increasing values ofpgL. For 
average rooms with approximately 2.4 m ceilings and relative 
humidity ranging from 10 to 75% at 24”C, the effective path length 
for carbon dioxide radiation is about 85% of the ceiling height, or 
2 m. The effective path length for water vapor is about 93% of the 
ceiling height, or 2.3 m. The effective emissivity of the water vapor 
and carbon dioxide radiating to the walls, ceiling, and floor of a 
room 4.9 by 14.6 m with 2.4 m ceilings is in Table 7. 

Radiation heat transfer from the gas to the walls is then 

q = (SA,Eg( T i -  T,) (37) 

The preceding discussion indicates the importance of gas radia- 
tion in environmental heat transfer problems. In large furnaces, gas 
radiation is the dominant mode of heat transfer, and many additional 
factors must be considered. Increased pressure broadens the spectral 
bands, and interaction of different radiating species prohibits simple 
summation of emissivity factors for the individual species. Non- 
blackbody conditions require separate calculations of emissivity 
and absorptivity. Hottel and Sarofim (1 967) and McAdams (1 954) 
discuss gas radiation more fully. 

THERMAL CONVECTION 

Convective heat transfer coefficients introduced previously can 
be estimated using correlations presented in this section. 

Forced Convection 
Forced-air coolers and heaters, forced-air- or water-cooled con- 

densers and evaporators, and liquid suction heat exchangers are 
examples of equipment that transfer heat primarily by forced con- 
vection. Although some generalized heat transfer coefficient corre- 
lations have been mathematically derived from fundamentals, they 
are usually obtained from correlations of experimental data. Most 
correlations for forced convection are of the form 
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hL 
k 

Nu = -‘ = f(Re,,, Pr) 

where 
Nu = Nusselt number 

L, = characteristic length 
h = convection heat transfer coefficient 

ReLc = pVL& = VLcIv 
V = fluid velocity 

Pr = Prandtl number = c,p/k 
c, = fluid specific heat 
p = fluid dynamic viscosity 
p = fluid density 
v = kinematic viscosity = pip 
k = fluid conductivity 

Fluid velocity and characteristic length depend on the geometry. 
External Flow. When fluid flows over a flat plate, a boundary 

layer forms adjacent to the plate. The velocity of fluid at the plate 
surface is zero and increases to its maximum free-stream value at 
the edge of the boundary layer (Figure 18). Boundary layer forma- 
tion is important because the temperature change from plate to fluid 
occurs across this layer. Where the boundary layer is thick, thermal 
resistance is great and the heat transfer coefficient is small. Flow 
within the boundary layer immediately downstream from the lead- 
ing edge is laminar. As flow proceeds along the plate, the laminar 
boundary layer increases in thickness to a critical value. Then, 
turbulent eddies develop in the boundary layer, except in a thin lam- 
inar sublayer adjacent to the plate. 

The boundary layer beyond this point is turbulent. The region 
between the breakdown of the laminar boundary layer and estab- 
lishment of the turbulent boundary layer is the transition region. 
Because turbulent eddies greatly enhance heat transport into the 
main stream, the heat transfer coefficient begins to increase rapidly 
through the transition region. For a flat plate with a smooth leading 
edge, the turbulent boundary layer starts at distance x, from the 
leading edge where the Reynolds number Re = Vx,/v is in the range 
300 000 to 500 000 (in some cases, higher). In a plate with a blunt 
front edge or other irregularities, it can start at much smaller Reyn- 
olds numbers. 

Internal Flow. For tubes, channels, or ducts of small diameter at 
sufficiently low velocity, the laminar boundary layers on each wall 
grow until they meet. This happens when the Reynolds number 
based on tube diameter, Re = Vavg D/v,  is less than 2000 to 2300. 
Beyond this point, the velocity distribution does not change, and no 
transition to turbulent flow takes place. This is called fully devel- 
oped laminar flow. When the Reynolds number is greater than 
10 000, the boundary layers become turbulent before they meet, and 
fully developed turbulent flow is established (Figure 19). If flow is 
turbulent, three different flow regions exist. Immediately next to the 
wall is a laminar sublayer, where heat transfer occurs by thermal 
conduction; next is a transition region called the buffer layer, where 

V- V- 

TRANSITION 7 7 
V- 

BUFFER 
INTENSE REGION 

TURBULENCE 

LAMINAR 
SUBLAYER 

LAMINAR TURBULENT 
BOUNDARY LAYER I BOUNDARY LAYER 

Fig. 18 External Flow Boundary Layer Build-up 
(Vertical Scale Magnified) 

both eddy mixing and conduction effects are significant; the final 
layer, extending to the pipe’s axis, is the turbulent region, where 
the dominant mechanism of transfer is eddy mixing. 

In most equipment, flow is turbulent. For low-velocity flow in 
small tubes, or highly viscous liquids such as glycol, the flow may 
be laminar. 

The characteristic length for internal flow in pipes and tubes is 
the inside diameter. For noncircular tubes or ducts, the hydraulic 
diameter D, is used to compute the Reynolds and Nusselt numbers. 
It is defined as 

(38) 
Cross-sectional area for flow 

Total wetted perimeter 
D ,  = 4 x  

Inserting expressions for cross-sectional area and wetted perim- 
eter of common cross sections shows that the hydraulic diameter is 
equal to 

The diameter of a round pipe 
Twice the gap between two parallel plates 
The difference in diameters for an annulus 
The length of the side for square tubes or ducts 

Table 8 lists various forced-convection correlations. In general, 
the Nusselt number is determined by the flow geometry, Reynolds 
number, and Prandtl number. One often useful form for internal 
flow is known as Colburn’s analogy: 

j = - - -  Nu - f ~  
R~PI - ’ ’~  * 

where f F  is the Fanning friction factor and j is the Colburn j-factor. 
It is related to the friction factor by the interrelationship of the trans- 
port of momentum and energy in turbulent flow. These factors are 
plotted in Figure 20. 

I_- ENTRY LENGTH -_I 
I I 

- 
DEVELOPING 

PROFILE 
TRANS IT1 ON 

f 
FULLY DEVELOPED TURBULENT 
VELOCITY PROFILE 

Fig. 19 Boundary Layer Build-up in Entrance Region of 
Tube or Channel 
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Fig. 20 Typical Dimensionless Representation of Forced- 
Convection Heat Transfer 
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VELOCITY THROUGH TUBES V, mm 

Re = 2100 at velocity where diameter curve crosses mean water temperature lines 

Fig. 21 Heat Transfer Coefficient for Turbulent Flow of 
Water Inside Tubes 

Simplified correlations for atmospheric air are also given in 

With a uniform tube surface temperature and heat transfer coef- 
Table 8. Figure 21 gives graphical solutions for water. 

ficient, the exit temperature can be calculated using 

(39) 

where ti and t, are the inlet and exit bulk temperatures of the fluid, 
tx is the pipe/duct surface temperature, and A is the surface area 
inside the pipe/duct. The convective heat transfer coefficient varies 
in the direction of flow because of the temperature dependence of 
the fluid properties. In such cases, it is common to use an average 
value of h in Equation (39) computed either as the average of h eval- 
uated at the inlet and exit fluid temperatures or evaluated at the aver- 
age of the inlet and exit temperatures. 

With uniform surface heat flux q”, the temperature of fluid at any 
section can be found by applying the first law of thermodynamics: 

4 cp(t - ti) = q”A 

q” = h(t, - t )  

(40) 

(41) 

The surface temperature can be found using 

With uniform surface heat flux, surface temperature increases in the 
direction of flow along with the fluid. 

Natural Convection. Heat transfer with fluid motion resulting 
solely from temperature differences (i.e., from temperature- 
dependent density and gravity) is natural (free) convection. Natural- 
convection heat transfer coefficients for gases are generally much 
lower than those for forced convection, and it is therefore important 
not to ignore radiation in calculating the total heat loss or gain. Radi- 
ant transfer may be of the same order of magnitude as natural con- 
vection, even at room temperatures; therefore, both modes must be 
considered when computing heat transfer rates from people, furni- 
ture, and so on in buildings (see Chapter 9). 

Natural convection is important in a variety of heating and refrig- 
eration equipment, such as (1) gravity coils used in high-humidity 
cold-storage rooms and in roof-mounted refrigerant condensers, 
(2) the evaporator and condenser of household refrigerators, (3) 
baseboard radiators and convectors for space heating, and (4) cool- 
ing panels for air conditioning. Natural convection is also involved 
in heat loss or gain to equipment casings and interconnecting ducts 
and pipes. 

104 105 106 107 108 109 
Gr Pr 

Fig. 22 Regimes of Free, Forced, and Mixed Convection- 
Flow in Horizontal Tubes 

Consider heat transfer by natural convection between a cold fluid 
and a hot vertical surface. Fluid in immediate contact with the surface 
is heated by conduction, becomes lighter, and rises because of the dif- 
ference in density of the adjacent fluid. The fluid’s viscosity resists 
this motion. The heat transfer rate is influenced by fluid properties, 
temperature difference between the surface at t, and environment at 
t,, and characteristic dimension L,. Some generalized heat transfer 
coefficient correlations have been mathematically derived from fun- 
damentals, but they are usually obtained from correlations of experi- 
mental data. Most correlations for natural convection are of the form 

Nu = -‘ = f(Ra,,, Pr) 
hL 

k 
where 

Nu = Nusselt number 
H = convection heat transfer coefficient 
L, = characteristic length 
K = fluid thermal conductivity 

At = Its ~ t,l 
Ra,, = Rayleigh number = gp AtL:/va 

g = gravitational acceleration 
p = coefficient of thermal expansion 
v = fluid kinematic viscosity = p/p 
a = fluid thermal diffusivity = k/pcp 

Pr = Prandtl number = v / a  

Correlations for a number of geometries are given in Table 9. 
Other information on natural convection is available in the Bibliog- 
raphy under Heat Transfer, General. 

Comparison of experimental and numerical results with existing 
correlations for natural convective heat transfer coefficients indi- 
cates that caution should be used when applying coefficients for 
(isolated) vertical plates to vertical surfaces in enclosed spaces 
(buildings). Altmayer et al. (1983) and Bauman et al. (1983) devel- 
oped improved correlations for calculating natural convective heat 
transfer from vertical surfaces in rooms under certain temperature 
boundary conditions. 

Natural convection can affect the heat transfer coefficient in the 
presence of weak forced convection. As the forced-convection effect 
(i.e., the Reynolds number) increases, “mixed convection” (superim- 
posed forced-on-free convection) gives way to pure forced convec- 
tion. In these cases, consult other sources [e.g., Grigull et al. (1 982); 
Metais and Eckert (1 964)] describing combined free and forced con- 
vection, because the heat transfer coefficient in the mixed-convec- 
tion region is often larger than that calculated based on the natural- or 
forced-convection calculation alone. Metais and Eckert (1 964) sum- 
marize natural-, mixed-, and forced-convection regimes for vertical 
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Table 8 Forced-Convection Correlations 

4.19 

I. General Correlation Nu = f(Re, Pr) 

11. Internal Flows for Pipes and Ducts: Characteristic length = D, pipe diameter, or D,, hydraulic diameter. 

Re = - VavgDh = 9 = a = % = 2 where m = mass flow rate, Q = volume flow rate, Pwef = wetted perimeter, 
L A ~ p  AcY LPwer  Y p w e t  A ,  = cross-sectional area, and v = kinematic viscosity ( P I P ) .  

Laminar : Re < 2300 

Nu=f  
RePr '  
Nu = 1.86(-) L/D (i) R~ pr 113 0 I4 

Developing Nu = 3,66 + 0.065(D/L)Re Pr 
1 + 0.04[(D/L)Re PrI2 

Colburn's analogy 

- L < Re8Pr [ ;s)o,42 

D 

(T8.1) 

(T8.2)a 

(T8.3) 

Fully developed, round Nu = 3.66 Uniform surface temperature (T8.4a) 

Turbulent: 

Nu = 4.36 

Nu = 0.023 Re4 5Pr0 

Nu = 0.023 Re4 5Pr0 Fully developed 

Evaluate properties at bulk 
( f , /2 ) (Re  - 1000)Pr 

1 + 12.7(fs/2)'/2(Pr2/3- 1 )  
temperature tb except ps Nu = [ 1 + ( f )2 /3 ]  and ts at surface 
temperature 

For fully developed flows, set DIL = 0. 

Uniform heat flux (T8.4b) 

Heating fluid (T8.5a)b 
Re 2 10 000 
Cooling fluid (T8.5b)b 
Re 2 10 000 

I 
f , =  (T8.6)' 

Multiply Nu by (T/Ts)0.45 for gases 
and by (Pr/Prs)o." for liquids 

(1.58 In Re ~ 3.28)2 

p o 14 
Nu = 0.027 Re4 5Pr' '(---I For VISCOUS fluids (T8.7)a 

For noncircular tubes, use hydraulic mean diameter Dh in the equations for Nu for an approximate value of h. 

111. External Flows for Flat Plate: Characteristic length = L = length of plate Re = VLIv 
All properties at anthrnetic mean of surface and fluid temperatures 

Laminar boundary layer Nu = 0 332 Re' 2Pr' 

Nu = 0 664 Re'/2Pr'/3 

Nu = 0 0296 Re4/5Pr' 

Nu = 0 037 Re4/5Pr'/3 

R e < 5 x  lo5 

Turbulent boundary layer 

Turbulent boundary layer 

R e z 5 x  lo5 

beginning at leading edge 
All Re 

Laminar-turbulent boundary layer 
R e z 5 x  lo5 

Nu = (0 37 Re4/5 ~ 871)Pr' 

Local value of h (T8.8) 

Average value of h (T8.9) 

Local value of h (T8.10) 

Average value of h (T8.11) 

Average value Re, = 5 x 1 O5 (T8.12) 

IV. External Flows for Cross Flow over Cylinder: Charactenstic length = D = diameter Re = VD/v 
All properties at anthrnetic mean of surface and fluid temperatures 

0 62 Re' 2Pr' Re 5 8 4/5 Average value of h 
2 3  l4['+(=0) ] (T8 14) [ l  +(O4/Pr)  ] 

Nu = 0 3 +  

V. Simplified Approximate Equations: h is in W/(m2.K), V is in m/s, D is in m, and t is in "C 

Flows in pipes 
Re > 10 000 

Atmospheric air (0 to 200'C): 

Water (4 to 104'C): 

h = (3.76 - 0.00497t)V o.8/D o.2 

h = (1431 + 20.9t)V o.8/Do.2 (McAdams 1954) 
Water (3 to 200T) :  h = (1206 + 23.9t)V o.8/Do.2 

(T8.15a)e 
(T8.15b)e 
( T 8 . 1 5 ~ ) ~  

(T8.15a) 

Flow over cylinders Atmospheric air: 0°C < t < 200"C, where t = arithmetic mean of air and surface temperature. 

h = 2,755V0.47l/D0.529 

h = (4.22 ~ 0.002 574 V0.633/D 0.367 

(T8.16a) 

(T8.16b) 

35 < Re < 5000 

5000 < Re < 50 000 

Water: 5°C < t < 9 0 T ,  where t = arithmetic mean of water and surface temperature. 

35 < Re < 5000 

5000 < Re < 50 000 

(T8.17a) 

(T8.17b)' 
Sources: aSieder and Tate (1936), bDittus and Boelter (1930), CGnielinski (1990), dChurchill and Bemstein (1977), eBased on S u  = 0.023 Re4 5Pr133, fBased on Morgan (1975). 
gMcAdams (1954). 
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Table 9 Natural Convection Correlations 

I. General relationships 

Characteristic length depends on geometry 

Nu =f(Ra, Pr) orf(Ra) (T9.1) 

R a = G r P r  Gr = m J 2 1 A T l L 3  
2 

U 

C P  
k Pr = At = t , - t ,  

11. Vertical plate 

t, = constant N~ = 0.68 + 0.67Ra1l4 10- '<Ra<109 
[ I  + ( 0 . 4 9 2 / ~ r ) ~ / ' ~ ] ~ / ~  

Characteristic dimension: L = height 
Properties at (t,  + t,)/2 except p at t ,  

109 < Ra < 1012 0.387Ra' 

[ 1 + (0.4921Pr) ] 9/16 8 27 

lo-' < R a <  10l2 
q", = constant 

Characteristic dimension: L = height 
Properties at t,, - t ,  except p at t ,  

0.387Ra' 

Equations (T9.2) and (T9.3) can be used for vertical cylinders if 
D/L > 35/Gr1 where D is diameter and L is axial length of cylinder 

111. Horizontal plate 
Characteristic dimension = L = AIP, where A is plate area and P is perimeter 
Properties of fluid at (t, + t,)/2 
Downward-facing cooled plate and upward-facing heated plate Nu = 0.96 Rail6 

Nu = 0.59 Rail4 
Nu = 0.54 Rail4 
Nu = 0.15 Rail3 
Nu = 0.27 Rail4 Downward-facing heated plate and upward-facing cooled plate 

(T9.5)b 
(T9.6f 
(T9.7f 
(T9.8f 
(T9.9)b 

1 < R a < 2 0 0  
200 < Ra < 1 O4 
2.2 x lo4 < Ra < 8 x 1 O6 
8 x 1 0 6 < R a <  1.5 x l o9  
105 < Ra < 1olO 

IV. Horizontal cylinder 
Characteristic length = d = diameter 
Properties of fluid at ( t ,  + t,)/2 except p at t ,  

(T9.1 O)c 

V. Sphere 
Characteristic length = D = diameter 
Properties at (t,  + t,)/2 except p at t ,  

Nu = 2 +  0.589 Rail4 
[ 1 + (0.469/Pr)9 I 6 l 4  

Ra < 10" (T9.1 l)d 

VI. Horizontal wire 
10-8<Ra< lo6 (T9.12)e 2 - I n  1 + 3 . 3  

c R a d  
- -  
Nu Characteristic dimension = D = diameter 

Properties at (t,  + t,)/2 

VII. Vertical wire 
Characteristic dimension = D = diameter; L = length ofwire Nu = c (Ra D/L)0.25 + 0.763 c ( ' / ~ ) ( R ~ D / L ) ( ' / ~ ~ )  C (Ra D/L)0.25 > 2 X (T9.13)~ 

Properties at (t,  + t,)/2 and 0.671 

[ 1 + (0.492/Pr)(9 16)](4 9 ,  

In both Equations (T9.12) and (T9.13), c = 

n = 0.25 + 1 

10 + 5(Ra)' 

VIII. Simplified equations with air at mean temperature of 21OC: h is in W/(m2.K), L and D are in m, and At is in OC. 

lo5 < Ra < lo9 (T9.14) Vertical surface h = 1 . 3 3 [ ~ )  At l 4  

Horizontal cylinder 

h = 1.26(At)'/3 

h = 1.04[-) AT 

h = 1.23(At)' 

D 

Ra > lo9 (T9.15) 

105 < Ra < 109 (T9.16) 

Ra > lo9 (T9.17) 

Sources: aChurchill and Chu (1975a), bLloyd and Moran (1974), Goldstein et al. (1973), CChurchill and Chu (1975b), dChurchill (1990), eFujii et al. (1986). 

and horizontal tubes. Figure 22 shows the approximate limits for hor- 
izontal tubes. Other studies are described by Grigull et al. (1982). 

V i  = 5°C V0 = 30°C di = OD of tube = 0.02 m 

ki =thermal conductivity of insulation material = 0.045 W/(m'K) 

From the problem statement, the outer surface temperature to of the 
insulation should not be less than the dew-point temperature of air. The 
dew-point temperature of air at 3 0 T ,  70% rh = 23.93"C. To determine 
the outer diameter of the insulation, equate the heat transfer rate per 
unit length of pipe (from the outer surface of the pipe to the water) to 

Example 10. Chilled water at 5°C flows inside a freely suspended 20 mm 
OD pipe at a velocity of 2.5 d s .  Surrounding air is at 3 0 T ,  70% rh. 
The pipe is to be insulated with cellular glass having a thermal conduc- 
tivity of 0.045 W/(m.K). Determine the radial thickness of the insula- 
tion to prevent condensation of water on the outer surface. 

Solution: In Figure 23, the heat transfer rate per unit length from the air to the outer surface: 
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I NSU LATl ON 

Fig. 23 Diagram for Example 10 

to  - ffi ~ 90 - t o  

l l d  1 
hidi 2ki di hard0 
- + - I n 2  - 

Heat transfer from the outer surface is by natural convection to air, 
so the surface heat transfer coefficient hot is the sum of the convective 
heat transfer coefficient h, and the radiative heat transfer coefficient 
h,.. With an assumed emissivity of 0.7 and using Equation (4), h,. = 

4.3 W/(m2.K). To determine the value of do, the values of the heat 
transfer coefficients associated with the inner and outer surfaces (hi and 
h,, respectively) are needed. Compute the value of hi using Equation 
(T8.6). Properties of water at an assumed temperature of 5°C are 

pw = 1000 kg/m3 pw = 0.001 518 (N,s)/m2 cpw = 4197 W/(m.K) 

k, = 0.5708 W/(m.K) P vd Pr, = 1 1.16 Red = - = 32 944 
IJ 

f ,  = 0.023 11 Nud= 205.6 hi = 5869 W/(m2,K) 

To compute ha using Equation (T9.10), the outer diameter of the 
insulation material must be found. Determine it by iteration by assum- 
ing a value of do, computing the value of ha, and determining the value 
of do from Equation (42). If the assumed and computed values of do are 
close to each other, the correct solution has been obtained. Otherwise, 
recompute h, using the newly computed value of do and repeat the pro- 
cess. 

Assume do = 0.05 m. Properties of air at ?= 27'C and 101.325 kPa 
are 

p = 1.176 kg/m3 k =  0.025 66 W/(m,K) p = 1.858 x (N,s)/m2 

Pr = 0.729 p = 0.003 299 (at 273.15 + 30 = 293.15 K) 

Ra = 71 745 Nu-7.157 ho=3.67 W/(m2.K) 

h,, = 3.67 + 4.3 = 7.97 W/(m2,K) 

From Equation (42), do = 0.044 28 m. Now, using the new value 
of 0.044 28 m for the outer diameter, the new values of h, and h,, are 
3.78 W/(m2.K) and 8.07 W/(m2.K), respectively. The updated value 
of do is 0.044 03 m. Repeating the process, the final value of do = 

0.044 01 m. Thus, an outer diameter of 0.045 m (corresponding to an 
insulation radial thickness of 12.5 mm) keeps the outer surface tem- 
perature at 24.1"C, higher than the dew point. (Another method to 
find the outer diameter is to iterate on the outer surface temperature 
for different values of do.) 

HEAT EXCHANGERS 

Mean Temperature Difference Analysis 
With heat transfer from one fluid to another (separated by a solid 

surface) flowing through a heat exchanger, the local temperature 
difference At varies along the flow path. Heat transfer rate may be 
calculated using 

q = UA Atm (43) 

where Uis the overall uniform heat transfer coefficient, A is the area 
associated with the coefficient U, and At,  is the appropriate mean 
temperature difference. 

For a parallel or counterflow heat exchanger, the mean tempera- 
ture difference is given by 

Atm = Atl  - At211n(Atl/At,) (44) 

where Atl  and At2 are temperature differences between the fluids at 
each end of the heat exchanger; At, is the logarithmic mean 
temperature difference (LMTD). For the special case of Atl  = At2 
(possible only with a counterflow heat exchanger with equal ca- 
pacities), which leads to an indeterminate form of Equation (44), 

Equation (44) for At,  is true only if the overall coefficient and 
the specific heat of the fluids are constant through the heat 
exchanger, and no heat losses occur (often well-approximated in 
practice). Parker et al. (1969) give a procedure for cases with vari- 
able overall coefficient U. For heat exchangers other than parallel 
and counterflow, a correction factor [see Incropera et al. (2007)l is 
needed for Equation (44) to obtain the correct mean temperature 
difference. 

At,  = ti = At,. 

NTU-Effectiveness (E) Analysis 
Calculations using Equations (43) and (44) for At, are conve- 

nient when inlet and outlet temperatures are known for both fluids. 
Often, however, the temperatures of fluids leaving the exchanger are 
unknown. To avoid trial-and-error calculations, the NTU-E method 
uses three dimensionless parameters: effectiveness E, number of 
transfer units (NTU), and capacity rate ratio c,.; the mean tempera- 
ture difference in Equation (44) is not needed. 

Heat exchanger effectiveness E is the ratio of actual heat trans- 
fer rate to maximum possible heat transfer rate in a counterflow heat 
exchanger of infinite surface area with the same mass flow rates and 
inlet temperatures. The maximum possible heat transfer rate for hot 
fluid entering at thl and cold fluid entering at tcl is 

qrna = Crnin(thi - tci) (45) 

where Cmin is the smaller of the hot [C, = ((he,), ] and cold 
[C, = (he,), ] fluid capacity rates, WIK; C,, is the larger. The 
actual heat transfer rate is 

4 = E q m m  (46) 

or a given exchanger type, heat transfer effectiveness can generally 
be expressed as a function of the number of transfer units (NTU) 
and the capacity rate ratio c,: 

E =f(NTU, c,, Flow arrangement) (47) 

where 
NTU = UA/C,,,,, 

c,. = cn1,n~Cnlax 

Effectiveness is independent of exchanger inlet temperatures. For 
any exchanger in which c, is zero (where one fluid undergoing a 
phase change, as in a condenser or evaporator, has an effective 
c, = m), the effectiveness is 

E = 1 - exp(-NTU) (48) 

The mean temperature difference in Equation (44) is then given by 

(49) 

After finding the heat transfer rate q, exit temperatures for 
constant-density fluids are found from 
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